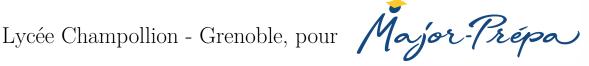
MATHÉMATIQUES - HEC B/L 2018

Proposition de corrigé par David Meneu



Exercice 1

Soit n un entier supérieur ou égal à 2, et soient n variables aléatoires X_1, X_2, \ldots, X_n telles que pour tout $i \in [\![1\,;n]\!]$, la variable aléatoire X_i suit la loi de Bernoulli de paramètre $p_i \in]0\,;1[.]$ On suppose que $\sum_{i=1}X_i=1$.

- 1. a) D'après le cours sur les variables de Bernoulli : $E(X_i) = p_i$ et $V(X_i) = p_i(1-p_i)$.
 - b) On a supposé que $\sum_{i=1}^{\infty} X_i = 1$, donc par linéarité de l'espérance :

$$E\left(\sum_{i=1}^{n} X_i\right) = 1 \iff \sum_{i=1}^{n} E(X_i) = 1 \iff \sum_{i=1}^{n} p_i = 1.$$

- c) Pour tout couple (i,j) de $[1;n]^2$ avec $i\neq j$: la variable aléatoire X_iX_j est le produit de deux variables qui ne prennent que les valeurs 0 et 1 : $X_iX_j(\Omega)$ est donc inclus dans $\{0;1\}$. Si de plus on tient compte du fait que $\sum_i X_i = 1$ implique que dans cette somme de variables de Bernoulli, une seule d'entre elle prend la valeur 1, et les autres sont toutes nulles, alors X_iX_j est presque certainement égale à 0, et par conséquent $E(X_iX_i) = 0$.
- Pour tout couple $(i, j) \in [1; n]^2$ tel que $i \neq j$:

$$a_{i,j} = \text{Cov}(X_i, X_j) = E(X_i X_j) - E(X_i)E(X_j) = 0 - p_i p_j = -p_i p_j,$$

et si
$$i = j$$
: $a_{i,i} = \text{Cov}(X_i, X_i) = V(X_i) = p_i(1 - p_i).$

b) Soit U la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients sont égaux à 1; pour tout $i \in [\![; n]\!]$, le coefficient de ligne i de la matrice colonne AU vaut :

$$(AU)_i = \sum_{j=1}^n a_{i,j} = -\sum_{\substack{j=1\\j\neq i}}^n p_i p_j + (p_i - p_i^2) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j + p_i\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j\right) = p_i - p_i \left(\sum_{\substack{j=1\\j\neq i}}^n p_j\right)$$

donc AU est en fait la matrice colonne nulle de $\mathcal{M}_{n,1}(\mathbb{R})$.

c) On vient donc de constater que $AU = 0_{n,1}$ alors que $U \neq 0_{n,1}$: cela suffit pour conclure que An'est pas inversible.

 $AU = 0_{n,1} \Longrightarrow A^{-1}AU = A^{-1}0_{n,1} \Longrightarrow U = 0_{n,1}.$ (Si elle l'était, alors on pourrait écrire :

3. Soient (x_1, x_2, \dots, x_n) et (y_1, y_2, \dots, y_n) deux n-uplets de réels tels que x_1, x_2, \dots, x_n ne sont pas tous

Soit Q le polynôme défini par : $\forall t \in \mathbb{R}, \ Q(t) = \sum_{i=1}^{n} (x_i t + y_i)^2$.

a) Il est clair qu'en tant que somme de carrés de réels, Q(t) est positif pour tout $t \in \mathbb{R}$. Or si on développe son terme général grâce à une identité remarquable, on constate que Q(t) est un trinôme du second degré de la variable t:

$$\forall t \in \mathbb{R}, \quad Q(t) = \sum_{i=1}^{n} (x_i^2 t^2 + 2x_i y_i t + y_i^2) = \left(\sum_{i=1}^{n} x_i^2\right) t^2 + 2\left(\sum_{i=1}^{n} x_i y_i\right) t + \sum_{i=1}^{n} y_i^2.$$

Puisque Q ne change pas de signe sur \mathbb{R} , alors on peut affirmer que son discriminant est négatif ou nul, soit :

$$4\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} - 4\left(\sum_{i=1}^{n} x_{i}^{2}\right) \times \left(\sum_{i=1}^{n} y_{i}^{2}\right) \leqslant 0 \iff \left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leqslant \left(\sum_{i=1}^{n} x_{i}^{2}\right) \times \left(\sum_{i=1}^{n} y_{i}^{2}\right). \quad (*)$$

b) Le cas d'égalité dans la relation (*) survient si et seulement si le discriminant du trinôme Q est nul : celui-ci admet donc une unique racine t_0 , c'est-à-dire un réel tel que :

$$\sum_{i=1}^{n} (x_i t_0 + y_i)^2 = 0 \iff \forall i \in [1; n], \ x_i t_0 + y_i = 0,$$

puisqu'une somme de réels positifs est nulle, si et seulement si chacun de ses termes est nul. Il y a donc égalité dans (*) si et seulement s'il existe $t_0 \in \mathbb{R}$ tel que :

$$\forall i \in [1; n], \quad y_i = -t_0 x_i \iff (y_1, y_2, \dots, y_n) = -t_0 \cdot (x_1, x_2, \dots, x_n).$$

En clair, le cas d'égalité survient si et seulement si les vecteurs (x_1, x_2, \ldots, x_n) et (y_1, y_2, \ldots, y_n) de \mathbb{R}^n , sont colinéaires/proportionnels.

- 4. Pour tout entier $n \ge 2$, soient $\alpha_1, \alpha_2, \dots, \alpha_n$ des réels non tous nuls. On pose : $\forall n \ge 2, \ Z_n = \sum_{i=1}^n \alpha_i X_i$.
 - a) Par linéarité de l'espérance :

$$E(Z_n) = 1 \iff \sum_{i=1}^n \alpha_i E(X_i) = 1 \iff \sum_{i=1}^n \alpha_i p_i = 1.$$

b) L'énoncé rappelait la formule : $V(Z_n) = \sum_{i=1}^n \alpha_i^2 V(X_i) + \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} \alpha_i \alpha_j \operatorname{Cov}(X_i, X_j)$

Si on suppose que $E(Z_n) = 1 \iff \sum_{i=1}^n \alpha_i p_i = 1$, alors :

$$V(Z_n) = \sum_{i=1}^n \alpha_i^2 p_i (1 - p_i) - \sum_{\substack{1 \leqslant i,j \leqslant n \\ i \neq j}} \alpha_i \alpha_j p_i p_j = \sum_{i=1}^n \alpha_i^2 (p_i - p_i^2) - \sum_{i=1}^n \alpha_i p_i \left(\underbrace{\sum_{j=1}^n \alpha_j p_j}_{=1} - \alpha_i p_i \right)$$

$$= \sum_{i=1}^{n} \alpha_i^2 p_i - \sum_{i=1}^{n} \alpha_i^2 p_i^2 - \sum_{i=1}^{n} \alpha_i p_i + \sum_{i=1}^{n} \alpha_i^2 p_i^2 = \sum_{i=1}^{n} \alpha_i^2 p_i - 1$$

Comme on sait qu'une variance est toujours positive, alors : $\sum_{i=1}^{n} \alpha_i^2 p_i - 1 \geqslant 0 \iff \sum_{i=1}^{n} \alpha_i^2 p_i \geqslant 1.$

O Major-Prépa

c) En reprenant les notations de la question 3, on pose pour tout $i \in [1; n] : x_i = \sqrt{p_i}$ et $y_i = \alpha_i \sqrt{p_i}$. L'inégalité (*) se réécrit dans ces conditions :

$$\left(\sum_{i=1}^{n} \alpha_i p_i\right)^2 \leqslant \left(\sum_{i=1}^{n} p_i\right) \times \left(\sum_{i=1}^{n} \alpha_i^2 p_i\right)$$

En exigeant $E(Z_n) = 1 \iff \sum_{i=1}^n \alpha_i p_i = 1$, et puisqu'on a toujours $\sum_{i=1}^n p_i = 1$, on retrouve alors

l'inégalité précédente :

$$1 \leqslant \sum_{i=1}^{n} \alpha_i^2 p_i \iff 0 \leqslant V(Z_n),$$

mais on sait aussi maintenant comment obtenir le cas d'égalité : $V(Z_n) = 0$ est bien la valeur minimale possible pourune variance, et on sait d'après 3.b) qu'elle peut être atteinte, si et seulement si les vecteurs $(x_1, x_2, \ldots, x_n) = (\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n})$ et $(y_1, y_2, \ldots, y_n) = (\alpha_1 \sqrt{p_1}, \alpha_2 \sqrt{p_2}, \ldots, \alpha_n \sqrt{p_n})$ sont colinéaires : il existe $\lambda \in \mathbb{R}$ tel que :

$$\forall i \in [1; n], \ \sqrt{p_i} = \lambda \alpha_i \sqrt{p_i} \iff \forall i \in [1; n], \ 1 = \lambda \alpha_i.$$

Cette dernière condition équivalente est possible si et seulement si tous les α_i sont égaux : on note alors α leur valeur commune, et dans ce cas on cherche $\alpha \in \mathbb{R}$ tel que :

$$E(Z_n) = 1 \iff \sum_{i=1}^n \alpha p_i = 1 \iff \alpha \sum_{i=1}^n p_i = 1 \iff \alpha = 1.$$

Bref, $E(Z_n) = 1$ et $V(Z_n)$ est minimale si et seulement si tous les α_i sont égaux à 1, et $Z_n = \sum_{i=1}^n X_i$.

- 5. Soient n variables aléatoires Y_1, Y_2, \ldots, Y_n qui vérifient les propriétés suivantes :
 - $\sum_{i=1}^{n} Y_i = 1$;
 - pour tout $i \in [1; n]$, les variables aléatoires X_i et Y_i sont de même loi;
 - pour tout couple $(i,j) \in [1;n]^2$, les variables aléatoires X_i et Y_j sont indépendantes.

Soit T_n la variable aléatoire définie par : $T_n = \frac{1}{n} \sum_{i=1}^n \frac{(X_i - Y_i)^2}{p_i(1 - p_i)}$.

a) Au vu des conditions imposées aux variables aléatoires $(X_i)_{1 \leqslant i \leqslant n}$ et $(Y_i)_{1 \leqslant i \leqslant n}$: dans la somme définissant T_n , un seul des X_i vaut 1 (et les autres valent forcément 0 chacun), et un seul des Y_j vaut 1 (et les autres valent forcément 0 chacun).

Il reste donc à distinguer deux cas :

• Pour tout couple $(i,j) \in [1;n]^2$ avec i < j: pour tout $\omega \in \Omega$ tel que $X_i(\omega) = Y_j(\omega) = 1$, on a $T_n(\omega) = \frac{1}{n} \left(\frac{1^2}{p_i(1-p_i)} + \frac{(-1)^2}{p_j(1-p_j)} \right) = \frac{1}{n} \left(\frac{1}{p_i(1-p_i)} + \frac{1}{p_j(1-p_j)} \right)$, valeur prise aussi si $X_j(\omega) = Y_i(\omega) = 1$, et qui a donc pour probabilité associée:

 $\mathbb{P}\big([X_i=1]\cap[Y_j=1]\big)+\mathbb{P}\big([X_j=1]\cap[Y_i=1]\big)=\mathbb{P}(X_i=1)\times\mathbb{P}(Y_j=1)+\mathbb{P}(X_j=1)\times\mathbb{P}(Y_i=1)=2p_ip_j,$ puisque X_i et Y_j sont indépendantes, de même que X_j et Y_i .

• Pour tout $i \in [1; n]$: pour tout $\omega \in \Omega$ tel que $X_i(\omega) = Y_i(\omega) = 1$, $(X_i(\omega) - Y_i(\omega))^2 = (1 - 1)^2 = 0$ et pour tout $j \neq i$, $X_j(\omega) = Y_j(\omega) = 0$ donc $T_n(\omega) = 0$. Cette valeur de T_n est prise avec la probabilité:

$$\mathbb{P}\Big(\bigcup_{i=1}^{n} [X_i = 1] \cap [Y_i = 1]\Big) = \sum_{i=1}^{n} \mathbb{P}(X_i = 1) \times \mathbb{P}(Y_i = 1) = \sum_{i=1}^{n} p_i^2.$$

L'union est en effet disjointe (un seul des X_i à la fois vaut 1), et X_i et Y_i sont indépendantes.

O Major-Prépa

b) On termine par le calcul de $E(T_n)$: par linéarité de l'espérance,

$$E(T_n) = \frac{1}{n} \sum_{i=1}^n \frac{E(X_i^2 - 2X_iY_i + Y_i^2)}{p_i(1 - p_i)} = \frac{1}{n} \sum_{i=1}^n \frac{E(X_i^2) - 2E(X_i) \times E(Y_i) + E(Y_i^2)}{p_i(1 - p_i)}$$

 X_i et Y_i sont indépendantes, et $X_i^2 = X_i$ puisque X_i ne prend que les valeurs 0 et 1

$$E(T_n) = \frac{1}{n} \sum_{i=1}^n \frac{p_i - 2p_i^2 + p_i}{p_i(1 - p_i)} = \frac{1}{n} \sum_{i=1}^n \frac{2p_i(1 - p_i)}{p_i(1 - p_i)} = \frac{2n}{n},$$

soit : $E(T_n) = 2$.

Exercice 2

Partie 1

Soit A une matrice fixée inversible de $\mathcal{M}_n(\mathbb{R})$, et Φ_A l'application définie sur $\mathcal{M}_n(\mathbb{R})$ par :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \quad \Phi_A(M) = AM.$$

- 1. a) L'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ a pour dimension n^2 .
 - b) Soient M, N deux matrices quelconques de $\mathcal{M}_n(\mathbb{R})$ et λ un réel quelconque :

$$\Phi_A(\lambda \cdot M + N) = A(\lambda \cdot M + N) = \lambda \cdot AM + AN = \lambda \cdot \Phi_A(M) + \Phi_A(N),$$

donc Φ_A est une application linéaire. De plus, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, le produit AM de deux matrices carrées d'ordre n, appartient encore à $\mathcal{M}_n(\mathbb{R})$, donc $\Phi_A : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ est bien un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

- 2. On suppose dans cette question que n=2 et que $A=\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
 - a) Les valeurs propres de A sont les réels λ tels que $A \lambda \cdot I_2$ est non inversible. En utilisant le critère d'inversibilité pour les matrices carrées d'ordre 2 rappelé dans l'énoncé, on peut donc écrire :

$$A - \lambda \cdot I_2 = \begin{pmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{pmatrix} \text{ est non-inversible } \iff (2 - \lambda)^2 - 1 = 0$$
$$\iff (2 - \lambda - 1)(2 - \lambda + 1) = 0 \iff (1 - \lambda)(3 - \lambda) = 0 \iff \lambda = 1 \text{ ou } \lambda = 3,$$

d'après une identité remarquable et la règle du produit nul. Les valeurs propres de A sont donc $\lambda_1=1$ et $\lambda_2=3$.

b) On commence ici par calculer la matrice représentative de Φ_A dans la base canonique \mathcal{B} de $\mathcal{M}_2(\mathbb{R})$; pour cela on calcule les images :

$$\Phi_A(E_1) = AE_1 = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}, \ \Phi_A(E_2) = AE_2 = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}, \ \Phi_A(E_3) = AE_3 = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \ \Phi_A(E_4) = AE_4$$

donc:
$$F = \operatorname{Mat}_{\mathcal{B}}(\Phi_A) = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix}.$$

© Major-Prépa

On peut maintenant vérifier que pour $\lambda_1 = 1$ et $\lambda_2 = 3$, le système $(F - \lambda_i \cdot I_4)X = 0_{4,1}$ d'inconnue

$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R})$$
, possède une infinité de solutions :

• Pour $\lambda_1 = 1$:

$$(F - 1 \cdot I_4)X = 0_{4,1} \iff \begin{cases} x & + z & = 0 \\ & y & + t = 0 \\ x & + z & = 0 \\ & y & + t = 0 \end{cases} \iff \begin{cases} z = -x \\ t = -y \end{cases}$$

On obtient bien une infinité de solutions, donc $\lambda_1 = 1$ est bien valeur propre de Φ_A , et le sous-espace propre associé est :

$$E_1(\Phi_A) = \left\{ \begin{pmatrix} x & y \\ -x & -y \end{pmatrix} \middle| (x,y) \in \mathbb{R}^2 \right\} = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right).$$

Ce sous-espace propre est engendré par deux vecteurs non-colinéaires qui forment donc une famille libre, donc une base de $E_1(\Phi_A)$.

• Pour $\lambda_2 = 3$:

$$(F - 3 \cdot I_4)X = 0_{4,1} \iff \begin{cases} -x & + z & = 0 \\ -y & + t & = 0 \\ x & - z & = 0 \\ y & - t & = 0 \end{cases} \iff \begin{cases} z = x \\ t = y \end{cases}$$

On obtient bien une infinité de solutions, donc $\lambda_2 = 3$ est bien valeur propre de Φ_A , et le sous-espace propre associé est :

$$E_3(\Phi_A) = \left\{ \begin{pmatrix} x & y \\ x & y \end{pmatrix} \middle| (x, y) \in \mathbb{R}^2 \right\} = \text{Vect}\left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right).$$

Ce sous-espace propre est engendré par deux vecteurs non-colinéaires qui forment donc une famille libre, donc une base de $E_3(\Phi_A)$.

c) Le simple fait que la matrice F qui représente Φ_A soit symétrique, assure que cet endomorphisme est diagonalisable.

Ce fait est par ailleurs confirmé par le fait que d'après ce qui précède :

$$\dim E_1(\Phi_A) + \dim E_3(\Phi_A) = 2 + 2 = 4 = \dim \mathcal{M}_2(\mathbb{R}).$$

D'après le théorème spectral, Φ_A n'admet donc pas d'autre valeur propre que 1 et 3, et est bien diagonalisable.

- d) Puisque A n'admet pas 0 pour valeur propre, alors cette matrice est inversible : on sait qu'alors AM a le même rang que M, donc le rang de $\Phi_A(M)$ est bien égal au rang de M pour toute matrice $M \in \mathcal{M}_2(\mathbb{R})$.
- 3. On revient au cas général où n est un entier supérieur ou égal à 2 et A est une matrice inversible de $\mathcal{M}_n(\mathbb{R})$.
 - a) Soit λ une valeur propre de A et X un vecteur colonne propre associé : par définition, on a donc $AX = \lambda \cdot X$, et alors :

$$\Phi_A(X^{\mathsf{t}}X) = AX^{\mathsf{t}}X = (AX)^{\mathsf{t}}X = (\lambda \cdot X)^{\mathsf{t}}X = \lambda \cdot X^{\mathsf{t}}X.$$

Comme de plus, si X a pour composantes x_i $(1 \le i \le n)$, alors X tX est la matrice carrée d'ordre n dont le coefficient d'indices $(i,j) \in [\![1\,;n]\!]^2$ vaut $x_ix_j : X$ est non nul en tant que vecteur propre, donc l'un des x_i au moins est non nul, et l'élément diagonal d'indice (i,i) correspondant de X tX vaut $x_i^2 \ne 0$, donc X tX est également non nul : c'est un vecteur propre de Φ_A pour la valeur propre λ .

[©] Major-Prépa

b) Réciproquement, si λ est valeur propre de Φ_A , alors il existe une matrice carrée M non nulle de $\mathcal{M}_n(\mathbb{R})$ telle que : $\Phi_A(M) = \lambda \cdot M \iff AM = \lambda \cdot M$.

Comme M est non nulle, alors l'une de ses colonnes (notons-les C_i avec $1 \le i \le n$) possède au moins un coefficient non nul : soit i_0 l'indice correspondant.

D'après la définition du calcul matriciel, l'égalité $AM = \lambda \cdot M$ est équivalente à :

$$\forall i \in [1; n], \ AC_i = \lambda \cdot C_i,$$

donc en particulier : $AC_{i_0} = \lambda \cdot C_{i_0}$ et la matrice-colonne non nulle C_{i_0} est alors un vecteur propre de la matrice A pour la valeur propre λ .

Ayant montré une implication et sa réciproque, on en déduit que la matrice A et l'endomorphisme Φ_A ont les mêmes valeurs propres.

c) Soit $M \in \mathcal{M}_n(\mathbb{R})$: par définition, $\operatorname{Ker}(M) = \{X \in \mathcal{M}_{n,1}(\mathbb{R}) | MX = 0_{n,1} \}$ et :

$$X \in \operatorname{Ker}(\Phi_A(M)) \iff \Phi_A(M)X = 0_{n,1} \iff AMX = 0_{n,1} \iff MX = 0_{n,1} \iff X \in \operatorname{Ker}(M).$$

On a notamment utilisé l'inversibilité de A pour écrire l'équivalence indiquée par (*).

Les équivalences obtenues assurent l'égalité d'ensembles : $\operatorname{Ker}(\Phi_A(M)) = \operatorname{Ker}(M)$.

d) Le rang d'une matrice étant celui de l'endomorphisme qui lui est canoniquement associé : le théorème du rang assure que :

$$\operatorname{rg}(M) = n - \dim \operatorname{Ker}(M) \stackrel{c)}{=} n - \dim \operatorname{Ker}(\Phi_A(M)) = \operatorname{rg}(\Phi_A(M)).$$

Partie 2

- 4. Soit h l'application de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} définie par : $\forall M \in \mathcal{M}_n(R), \ h(M) = \text{Tr}(M)$.
 - a) Soient $M = (m_{i,j})_{1 \leq i,j \leq n}$ et $P = (p_{i,j})_{1 \leq i,j \leq n}$ deux matrices quelconques de $\mathcal{M}_n(\mathbb{R})$, et λ un réel quelconque : dans ce cas, la matrice $\lambda \cdot M + P$ a pour terme général $\lambda \cdot m_{i,j} + p_{i,j}$ $(1 \leq i,j \leq n)$, donc sa trace vaut :

$$\operatorname{Tr}(\lambda \cdot M + N) = \sum_{i=1}^{n} (\lambda \cdot m_{i,i} + p_{i,i}) = \lambda \cdot \sum_{i=1}^{n} m_{i,i} + \sum_{i=1}^{n} p_{i,i} = \lambda \cdot \operatorname{Tr}(M) + \operatorname{Tr}(P),$$

donc $h(\lambda \cdot M + P) = \lambda \cdot h(M) + h(P)$, et h est bien une application linéaire.

b) L'image $\operatorname{Im}(h)$ est un sous-espace vectoriel de l'espace d'arrivée \mathbb{R} , il n'y a donc que deux solutions : soit $\dim \operatorname{Im}(h) = 0 \iff \operatorname{Im}(h) = \{0\}$, soit $\dim \operatorname{Im}(h) = 1 \iff \operatorname{Im}(h) = \mathbb{R}$.

La première option est exclue : cela signifierait que la trace de n'importe quelle matrice de $\mathcal{M}_n(\mathbb{R})$ est nulle, et on trouve très facilement des contre-exemples, notamment : $\text{Tr}(I_n) = n \neq 0$.

Ainsi, dim Im(h) = 1 (et donc $\text{Im}(h) = \mathbb{R}$), et le théorème du rang pour l'application h donne alors :

$$\dim \operatorname{Ker}(h) = \dim \mathcal{M}_n(\mathbb{R}) - \dim \operatorname{Im}(h) = n^2 - 1.$$

- 5. Soit Ψ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par : $\forall M \in \mathcal{M}_n(\mathbb{R}), \ \Psi(M) = -M + \operatorname{Tr}(M) \cdot I_n$.
 - a) Prouver que -1 est valeur propre de Ψ , c'est trouver une matrice M non nulle de $\mathcal{M}_n(\mathbb{R})$ telle que : $\Psi(M) = -M \iff -M + \operatorname{Tr}(M) \cdot I_n = -M \iff \operatorname{Tr}(M) \cdot I_n = 0_n$.

Comme I_n n'est pas la matrice nulle, alors $\Psi(M) = -M \iff \operatorname{Tr}(M) = 0 \iff M \in \operatorname{Ker}(h)$. Comme le noyau de h n'est pas réduit à la matrice nulle, on en déduit que -1 est bien valeur propre de Ψ , et l'équivalence précédente prouve même que :

$$E_{-1}(\Psi) = \operatorname{Ker}(h),$$

le sous-espace propre associé est donc de dimension $n^2 - 1$.

[©] Major-Prépa

b) La matrice I_n a pour seuls coefficients non nuls, ses n éléments diagonaux tous égaux à 1, donc :

$$\Psi(I_n) = -I_n + \operatorname{Tr}(I_n) \cdot I_n = -I_n + n \cdot I_n = (n-1) \cdot I_n.$$

c) Du calcul précédent, on déduit que I_n est vecteur propre de Ψ pour la valeur propre (n-1), et $\dim E_{n-1}(\Psi) \geqslant 1$.

On connaît donc deux valeurs propres distinctes de Ψ : -1 et n-1, et de plus :

$$\dim E_{-1}(\Psi) + \dim E_{n-1}(\Psi) \geqslant n^2 - 1 + 1 = n^2 = \dim \mathcal{M}_n(\mathbb{R}),$$

donc d'après le théorème spectral :

- L'endomorphisme Ψ n'a pas d'autre valeur propre que -1 et n-1.
- Les deux sous-espaces propres ont pour dimensions respectives :

$$\dim E_{-1}(\Psi) = n^2 - 1$$
 et $\dim E_{n-1}(\Psi) = 1$,

et Ψ est diagonalisable.

d) On suppose dans cette questions que n=2. Alors pour toute matrice $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}):$ $\mathrm{Tr}(M)=a+d,$ donc

$$\Psi(M) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} - (a+d) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -d & b \\ c & -a \end{pmatrix}.$$

Le rang de M a alors trois valeurs possibles :

- $\operatorname{rg}(M) = 0 \iff a = b = c = d = 0 \iff \psi(M) = 0 \iff \operatorname{rg}(\Psi(M)) = 0$, donc dans ce cas, M et $\Psi(M)$ ont bien le même rang.
- $\operatorname{rg}(M) = 2 \iff M \text{ est inversible} \iff ad bc \neq 0 \iff (-d) \times (-a) bc \neq 0 \iff \Psi(M) \text{ est inversible} \iff \operatorname{rg}(\Psi(M)) = 2.$
- Le dernier cas est celui où M est non nulle et non-inversible, auquel cas $\operatorname{rg}(M) = 1$. Dans ce cas, $\Psi(M)$ est également non nulle (un coefficient au moins de M, est non-nul, donc il en est de même pour $\Psi(M)$), et son déterminant $(-d) \times (-a) - bc = ad - bc$ est, lui, nul : par conséquent, $\operatorname{rg}(\Psi(M)) = 1$.

On a bien vérifié que dans tous les cas de figure, M et $\Psi(M)$ ont le même rang lorsque n=2.

e) On suppose que $n \ge 3$ et que le rang de M est égal à n : cela signifie donc que M est de rang maximal, donc est inversible.

Par définition d'une valeur propre, on sait que :

 λ est valeur propre de $M \iff \lambda \cdot I_n - M$ est non-inversible $\iff \operatorname{rg}(\lambda \cdot I_n - M) < n$.

A contrario, et avec $\lambda = \text{Tr}(M)$:

$$\operatorname{Tr}(M)$$
 n'est pas valeur propre de $M \iff \operatorname{Tr}(M) \cdot I_n - M$ est inversible $\iff \operatorname{rg}(\operatorname{Tr}(M) \cdot I_n - M) = n$ $\iff \operatorname{rg}(\operatorname{Tr}(M) \cdot I_n - M) = \operatorname{rg}(M),$

ce qui donne bien l'équivalence demandée.

© Major-Prépa

Exercice 3

1. a) D'après le cours sur la loi uniforme à densité, la fonction de répartition F_X de la variable aléatoire X est définie par :

$$\forall x \in \mathbb{R}, \quad F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{x}{\theta} & \text{si } 0 \leqslant x \leqslant \theta \\ 1 & \text{si } x > \theta \end{cases}$$

b) L'espérance et la variance de X sont encore données directement par le cours :

$$E(X) = \frac{0+\theta}{2} = \frac{\theta}{2}$$
 et $V(X) = \frac{(\theta-0)^2}{12} = \frac{\theta^2}{12}$.

- 2. Pour tout entier $n \ge 1$, on pose : $Y_n = \frac{2}{n} \sum_{k=1}^n X_k$.
 - a) La loi des X_k , donc de Y_n dépend de θ , donc Y_n est un estimateur du paramètre θ . D'autre part, par linéarité de l'espérance :

$$E(Y_n) = \frac{2}{n} \sum_{k=1}^n E(X_k) = \frac{2}{n} \sum_{k=1}^n \frac{\theta}{2} = \frac{2}{n} \times n \times \frac{\theta}{2} = \theta,$$

donc Y_n est un estimateur sans biais de θ .

b) Les variables $(X_k)_{k\geqslant 1}$ étant mutuellement indépendantes, d'après les propriétés de la variance :

$$V(Y_n) = \left(\frac{2}{n}\right)^2 \sum_{k=1}^n V(X_k) = \frac{4}{n^2} \sum_{k=1}^n \frac{\theta^2}{12} = \frac{4}{n^2} \times n \times \frac{\theta^2}{12} = \frac{\theta^2}{3n}.$$

On peut alors écrire l'inégalité de Bienaymé-Tchebychev pour la variable aléatoire Y_n : pour tout $\varepsilon>0,$

$$\mathbb{P}([|Y_n - E(Y_n)| > \varepsilon]) \leqslant \frac{V(Y_n)}{\varepsilon^2} \iff \mathbb{P}([|Y_n - \theta| > \varepsilon]) \leqslant \frac{\theta^2}{3n\varepsilon^2}$$

Comme $\lim_{n\to+\infty}\frac{\theta^2}{3n\varepsilon^2}=0$ et puisqu'une probabilité est toujours positive : d'après le théorème d'encadrement,

$$\lim_{n \to +\infty} \mathbb{P}([|Y_n - \theta| > \varepsilon]) = 0.$$

- 3. Pour tout entier $n \ge 1$, on pose: $T_n = \max(X_1, X_2, \dots, X_n)$.
 - a) Pour tout réel x:

$$F_{T_n}(x) = \mathbb{P}(T_n \leqslant x) = \mathbb{P}\left(\max(X_1, X_2, \dots, X_n) \leqslant x\right)$$

$$= \mathbb{P}\left([X_1 \leqslant x] \cap [X_2 \leqslant x] \cap \dots \cap [X_n \leqslant x]\right) \quad \text{par définition du maximum}$$

$$= \mathbb{P}(X_1 \leqslant x) \times \mathbb{P}(X_2 \leqslant x) \times \dots \times \mathbb{P}(X_n \leqslant x) \quad \text{par indépendance mutuelle des } X_k$$

$$= \left(F_X(x)\right)^n \quad \text{car les } X_k \text{ suivent toutes la même loi que } X$$

$$F_{T_n}(x) = \begin{cases} 0^n = 0 & \text{si } x < 0 \\ \left(\frac{x}{\theta}\right)^n & \text{si } 0 \leqslant x \leqslant \theta \\ 1^n = 1 & \text{si } x > \theta \end{cases}$$

© Major-Prépa

b) Pour tout $n \in \mathbb{N}^*$: $F_{T_n} = (F_X)^n$ est le produit de n facteurs identiques égaux à F_X , qui est une fonction continue sur \mathbb{R} , de classe \mathcal{C}^1 sur \mathbb{R} sauf peut-être en un nombre fini de points, en l'occurrence 0 et θ ; la fonction F_{T_n} a donc les mêmes propriétés, et T_n est une variable à densité. On obtient une densité de T_n en dérivant F_{T_n} sauf en 0 et en θ où on lui donne la valeur arbitraire zéro :

$$\forall x \in \mathbb{R}, \quad f_{T_n}(x) = \begin{cases} 0 & \text{si } x \leq 0 \text{ ou } x \geqslant \theta \\ \frac{nx^{n-1}}{\theta^n} & \text{si } 0 < x < \theta \end{cases}.$$

c) La variable aléatoire T_n est à support borné, donc elle admet une espérance donnée par l'intégrale :

$$E(T_n) = \int_{-\infty}^{+\infty} t \cdot f_{T_n}(t) dt = \frac{n}{\theta^n} \int_0^{\theta} t^n dt = \frac{n}{\theta^n} \times \frac{\theta^{n+1}}{n+1} = \frac{n}{n+1} \cdot \theta.$$

On en déduit, par linéarité de l'espérance, que $E\left(\frac{n+1}{n}\cdot T_n\right) = \frac{n+1}{n}E(T_n) = \frac{n+1}{n}\cdot \frac{n}{n+1}\cdot \theta = \theta$, donc $W_n = \frac{n+1}{n}\cdot T_n$ est un estimateur sans biais de θ .

d) Pour utiliser à nouveau l'inégalité de Bienaymé-Tchebychev, on commence par calculer la variance de T_n , via son moment d'ordre 2 : comme T_n est à support borné, alors elle admet un moment d'ordre 2 qu'on obtient via le théorème de transfert :

$$E(T_n^2) = \int_{-\infty}^{+\infty} t^2 \cdot f_{T_n}(t) dt = \frac{n}{\theta^n} \int_0^{\theta} t^{n+1} dt = \frac{n}{\theta^n} \times \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}.$$

La variable aléatoire T_n admet donc une variance donnée par la formule de Koenig-Huygens :

$$V(T_n) = E(T_n^2) - E(T_n)^2 = \frac{n\theta^2}{n+2} - \frac{n^2\theta^2}{(n+1)^2} = \frac{n(n+1)^2 - n^2(n+2)}{(n+2)(n+1)^2} \cdot \theta^2 = \frac{n\theta^2}{(n+2)(n+1)^2}.$$

La variable aléatoire W_n admet donc une variance qui vaut :

$$V(W_n) = \frac{(n+1)^2}{n^2} V(T_n) = \frac{\theta^2}{n(n+2)}, \text{ donc } \lim_{n \to +\infty} V(W_n) = 0.$$

On peut alors écrire l'inégalité de Bienaymé-Tchebychev pour la variable aléatoire W_n : pour tout $\varepsilon > 0$,

$$\mathbb{P}\big([|W_n - E(W_n)| > \varepsilon]\big) \leqslant \frac{V(W_n)}{\varepsilon^2} \iff \mathbb{P}\big([|Y_n - \theta| > \varepsilon]\big) \leqslant \frac{\theta^2}{n(n+2)\varepsilon^2}$$

Comme $\lim_{n\to +\infty} \frac{\theta^2}{n(n+2)\varepsilon^2} = 0$ et puisqu'une probabilité est toujours positive : d'après le théorème d'encadrement,

$$\lim_{n \to +\infty} \mathbb{P}([|W_n - \theta| > \varepsilon]) = 0.$$

Remarque : ce n'était pas demandé, mais le fait remarquable que $V(W_n) = o(V(Y_n))$ assure que W_n est un meilleur estimateur sans biais et convergent de θ , que Y_n .

4. Soient U et V deux variables aléatoires à densité indépendantes, f_U une densité de U et F_V la fonction de répartition de V.

D'après les propriétés de ces deux fonctions, on sait que F_V est continue sur \mathbb{R} , f_U est continue sur \mathbb{R} sauf peut-être en un nombre fini de point; pour tout $z \in \mathbb{R}$, on a pour tout réel t:

$$0 \leqslant f_U(t)$$
 et $0 \leqslant F_V(z+t) \leqslant 1$ donc $0 \leqslant f_U(t) \cdot F_V(z+t) \leqslant f_U(t)$.

Or l'intégrale $\int_{-\infty}^{+\infty} f_U(t) dt$ converge (et vaut 1) puisque f_U est une densité de probabilité : d'après le théorème de comparaison des intégrales de fonctions continues (presque partout), positives, on en

O Major-Prépa

déduit que l'intégrale $\int_{-\infty}^{+\infty} f_U(t) \cdot F_V(z+t) dt$ est elle-même convergente.

On pose alors:
$$\forall z \in \mathbb{R}, \quad J(z) = \int_{-\infty}^{+\infty} f_U(t) \cdot F_V(z+t) dt.$$

L'énoncé admettait que dans toute la suite, J est la fonction de répartition de la variable aléatoire V-U.

- 5. Pour tout entier $n \ge 2$, on pose: $T_{n-1} = \max(X_1, X_2, \dots, X_{n-1})$ et $Z_n = T_{n-1} X_n$.
 - a) La variable aléatoire T_{n-1} est le maximum de n-1 variables aléatoires qui ont toutes pour univers-image $[0;\theta]$, donc on peut dire que $T_{n-1}(\Omega) = [0;\theta]$, et ainsi :

$$Z_n(\Omega) = (T_{n-1} - X_n)(\Omega) = \{x - y | x, y \in [0; \theta]\} = [-\theta; \theta].$$

En effet pour tout x de $T_{n-1}(\Omega)$ et tout y de $X_n(\Omega)$: $0 \le y \le \theta \iff -\theta \le -y \le 0$ et $0 \le x \le \theta$, donc $-\theta \le x - y \le \theta$, et pour tout $z \in [-\theta; \theta]$, on peut trouver un couple $(x, y) \in [0; \theta]^2$ tel que z = x - y.

- b) La variable aléatoire T_{n-1} est une fonction des seules variables $X_1, X_2, \ldots, X_{n-1}$ et les $(X_i)_{i \in \mathbb{N}^*}$ sont mutuellement indépendantes, donc d'après le lemme des coalitions, T_{n-1} et X_n sont indépendantes.
- c) La fonction de répartition $F_{T_{n-1}}$ est donnée, à un décalage d'indice près, par le calcul réalisé en

3.a) et une densité de
$$X_n$$
 est f_{X_n} : $t \mapsto \begin{cases} 0 & \text{si } x < 0 \text{ ou } x > \theta \\ 1/\theta & \text{si } 0 \leqslant x \leqslant \theta \end{cases}$.

D'après le résultat admis juste avant cette question 5, la fonction de répartiton F_{Z_n} de $Z_n = T_{n-1} - X_n$ est donnée par :

$$\forall z \in \mathbb{R}, \quad F_{Z_n}(z) = \int_{-\infty}^{+\infty} f_{X_n}(t) F_{T_{n-1}}(z+t) dt = \int_0^{\theta} \frac{1}{\theta} F_{T_{n-1}}(z+t) dt \stackrel{[u=z+t]}{=} \int_z^{z+\theta} \frac{1}{\theta} F_{T_{n-1}}(u) du.$$

- d) On termine donc le calcul de $F_{\mathbb{Z}_n}(z)$ en distinguant les 4 cas suggérés par l'énoncé :
 - si $z < -\theta$: alors $z + \theta < 0$ et pour tout $u \in [z; z + \theta]$, $F_{T_{n-1}}(u) = 0$ et par conséquent, $F_{Z_n}(z) = 0$.
 - si $-\theta \leqslant z \leqslant 0$, alors $0 \leqslant z + \theta \leqslant \theta$ et :

$$F_{Z_n}(z) = \int_0^{z+\theta} \frac{1}{\theta} \cdot \left(\frac{u}{\theta}\right)^{n-1} du = \frac{1}{\theta^n} \left[\frac{u^n}{n}\right]_0^{z+\theta} = \frac{(z+\theta)^n}{n\theta^n} = \frac{1}{n} \left(1 + \frac{z}{\theta}\right)^n.$$

• si $0 < z \le \theta$: alors $\theta < z + \theta$, et :

$$F_{Z_n}(z) = \int_z^\theta \frac{1}{\theta} \cdot \left(\frac{u}{\theta}\right)^{n-1} du + \int_\theta^{z+\theta} \frac{1}{\theta} \cdot 1 du = \frac{1}{\theta} \left[\frac{u^n}{n}\right]_z^\theta + \frac{1}{\theta}(z+\theta-\theta) = \frac{\theta^n - z^n}{n\theta^n} + \frac{z}{\theta} = \frac{1}{n} \left(1 - \left(\frac{z}{\theta}\right)^n\right) + \frac{z}{\theta}.$$

• si $z > \theta$, alors $[z; z+\theta]$ est entièrement inclus dans $[\theta; +\infty[$, et $: F_{Z_n}(z) = \int_z^{z+\theta} \frac{1}{\theta} \cdot 1 du = \frac{\theta}{\theta} = 1$.

On retrouve bien donc, l'expression de $F_{Z_n}(z)$ donnée par l'énoncé.

6. a) Pour tout entier $n \ge 2$: l'événement $[T_n = X_n]$ est réalisé si et seulement si X_n est le maximum des n variables aléatoires X_1, X_2, \ldots, X_n . C'est le cas si et seulement si X_n est supérieur à toutes les autres variables aléatoires $X_1, X_2, \ldots, X_{n-1}$, ce qui est aussi équivalent au fait que X_n est supérieur à la plus grande des (n-1) autres variables aléatoires de l'échantillon.

En clair : pour tout entier $n \ge 2$, les événements $[T_n = X_n]$ et $[X_n \ge T_{n-1}]$ sont égaux, et $[T_n = X_n]$ et $[T_{n-1} > X_n]$ ont la même probabilité puisqu'on travaille avec des variables à densité.

b) Ainsi, pour tout entier $n \ge 2$:

$$\mathbb{P}(T_n = X_n) = \mathbb{P}(X_n > T_{n-1}) = \mathbb{P}(T_{n-1} - X_n < 0) = \mathbb{P}(Z_n < 0) = F_{Z_n}(0) = \frac{1}{n}.$$

