

Code sujet : 338

Conception : HEC Paris

FILIERE LITTÉRAIRE

PROGRAMME ENS B/L

Jeudi 30 avril 2015, de 8 h. à 12 h.

<u>OPTIONS</u>:

MATHÉMATIQUES

SCIENCES SOCIALES *

^{*} Conception en collaboration avec AUDENCIA

Conceptions: HEC Paris

MATHÉMATIQUES

Programme ENS B/L

Jeudi 30 avril 2015, de 8 h. à 12 h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à **encadrer** dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage d'aucun document : **l'utilisation de toute calculatrice et de tout matériel électronique est interdite.** Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre

L'épreuve est constituée de deux problèmes indépendants.

PROBLÈME 1

Dans tout le problème :

- n désigne un entier supérieur ou égal à 2 et on note E_n l'espace vectoriel $\mathbb{R}_n[X]$ des polynômes à coefficients réels de degré inférieur ou égal à n.
- Pour tout $k \in \mathbb{N}$, on note $[0, k] = \{0, 1, ..., k\}$.
- Si f est une fonction admettant une dérivée d'ordre j, celle-ci est notée $f^{(j)}$ avec la convention $f^{(0)} = f$.
- On note $\mathcal{B}_n = (1, X, \dots, X^n)$ la base canonique de E_n .
- On admet sans démonstration les deux résultats suivants :
 - (i) si f et g sont deux fonctions admettant des dérivées d'ordre p ($p \in \mathbb{N}$), on a :

$$(fg)^{(p)} = \sum_{k=0}^{p} {p \choose k} f^{(k)} g^{(p-k)}$$
. [1]

(ii) si u et v sont deux fonctions de classe C^m $(m \ge 1)$ sur [-1,1], on a :

$$\int_{-1}^{1} u^{(m)}(t) v(t) dt = \left[\sum_{i=0}^{m-1} (-1)^{i} u^{(m-1-i)}(t) v^{(i)}(t) \right]_{-1}^{1} + (-1)^{m} \int_{-1}^{1} u(t) v^{(m)}(t) dt . \quad [2]$$

• On note Φ l'application qui à tout polynôme $P \in E_n$, associe le polynôme $\Phi(P) = (X^2 - 1)P'' + 2XP'$.

Partie I. Quelques propriétés de Φ .

- 1.a) Montrer que Φ est un endomorphisme non injectif de E_n .
 - b) Écrire la matrice A de Φ dans la base \mathcal{B}_n .
- 2.a) Déterminer les valeurs propres de Φ .
 - b) Montrer que Φ est diagonalisable.
 - c) Donner la dimension des sous-espaces propres de Φ .
 - d) Déterminer le noyau de Φ .

Partie II. Une base de vecteurs propres de Φ .

Dans cette partie, on note i un entier de [1, n] et on considère les deux polynômes de $\mathbb{R}[X]$, A_i et ℓ_i tels que : $A_i = (X^2 - 1)^i$ et $\ell_i = A_i^{(i)}$.

- 3.a) Établir l'égalité : $(XA_i)^{(i)} = X\ell_i + iA_i^{(i-1)}$.
 - b) À l'aide du résultat [1] admis, montrer que : $\ell_{i+1} = (X^2 1)A_i^{(i+1)} + 2(i+1)XA_i^{(i)} + i(i+1)A_i^{(i-1)}$.
 - c) En exprimant $2(i+1)X\ell_i$ à l'aide de la question 3.a), en déduire l'égalité :

$$(X^{2}-1)\ell'_{i} = \ell_{i+1} - 2(i+1)(XA_{i})^{(i)} + i(i+1)A_{i}^{(i-1)}.$$

- 4.a) Montrer que $A'_{i+1} = 2(i+1)XA_i$.
 - b) En dérivant i fois la relation précédente, en déduire l'égalité : $(X^2 1)\ell'_i = i(i+1)A_i^{(i-1)}$.
 - c) Calculer $\Phi(\ell_i)$ et en déduire une base de E_n constituée de vecteurs propres de Φ .
- 5.a) En écrivant $A_i = (X+1)^i(X-1)^i$, calculer $\ell_i(1)$.
 - b) Déterminer le degré de ℓ_i et son coefficient de plus haut degré.

Partie III. Décomposition d'un polynôme $P \in E_n$ sur une base \mathcal{B}'_n .

- 6.a) On suppose que $j \in \mathbb{N}^*$. Montrer que pour tout $k \in [0, j-1]$, les réels 1 et -1 sont racines de $A_j^{(k)}$.
 - b) En appliquant le résultat [2] admis, calculer pour tout couple d'entiers (i, j) vérifiant $0 \le i < j$, l'intégrale :

$$J_{i,j} = \int_{-1}^{1} \ell_i(t)\ell_j(t) dt.$$

- 7. Pour tout entier naturel i, on note I_i l'intégrale définie par : $I_i = \int_{-1}^1 \ell_i^2(t) \, \mathrm{d}t$.
 - a) Établir à l'aide de la question 5.b) et du résultat [2] admis, la relation :

$$I_i = (-1)^i (2 i)! \int_{-1}^1 (t^2 - 1)^i dt$$
.

- b) On pose : $K_i = \int_{-1}^{1} (t^2 1)^i dt$. Établir la relation : $(2i + 1)K_i = -2iK_{i-1}$.
- c) Montrer que pour tout entier naturel i, on a : $I_i = \frac{(i!)^2}{2i+1} 2^{2i+1}$.
- 8. Pour tout entier naturel i, on pose : $L_i = \frac{1}{2^i i!} \ell_i$.
 - a) On pose : $\mathcal{B}'_n = (L_0, L_1, \dots, L_n)$. Montrer que \mathcal{B}'_n est une base de E_n .
 - b) Montrer que la décomposition d'un polynôme quelconque $P \in E_n$ sur la base \mathcal{B}'_n est donnée par :

$$P = \sum_{i=0}^{n} \left(\frac{2i+1}{2} \int_{-1}^{1} P(t)L_{i}(t) dt \right) L_{i}.$$

PROBLÈME 2

Dans tout le problème :

- Toutes les variables aléatoires sont supposées définies sur le même espace probabilisé (Ω, \mathcal{A}, P) et admettent pour tout entier naturel k, un moment d'ordre k.
- Pour toute variable aléatoire X, on définit sa fonction génératrice des moments M_X dont le domaine de définition est noté D_X, par : ∀t ∈ D_X, M_X(t) = E(e^{tX}).
 On remarque que D_X n'est jamais vide car le réel 0 est un élément de D_X et on suppose que D_X contient un intervalle ouvert contenant 0.
- On admet les résultats suivants :
 - (i) \mathcal{D}_X est un intervalle.
 - (ii) La fonction M_X est de classe C^{∞} sur \mathcal{D}_X et pour tout entier naturel k, la fonction dérivée d'ordre k de M_X , notée $M_X^{(k)}$, est donnée par : $\forall t \in \mathcal{D}_X$, $M_X^{(k)}(t) = E(X^k e^{tX})$.
 - (iii) Si deux variables aléatoires ont la même fonction génératrice des moments, alors elles sont de même loi.
 - (iv) Soit R un réel strictement positif. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires et X une variable aléatoire telles que pour tout $t\in]-R,R[$, on a $\lim_{n\to +\infty}M_{X_n}(t)=M_X(t)$.

Alors, la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers la variable aléatoire X.

Partie I. Exemples et premières propriétés.

- 1.a) Vérifier que pour tout $t \in \mathcal{D}_X$, on a $M_X(t) \geqslant 0$.
 - b) Montrer que pour tout entier naturel k, on a : $E(X^k) = M_X^{(k)}(0)$.
- 2.a) Pour tous réels a et b, établir l'équivalence : $(t \in \mathcal{D}_{aX+b}) \iff (at \in \mathcal{D}_X)$.
 - b) Montrer que pour tout $t \in \mathcal{D}_{aX+b}$, on a : $M_{aX+b}(t) = e^{bt} M_X(at)$.
- 3.a) On suppose que X suit la loi binomiale de paramètres (n,p). Vérifier que $\mathcal{D}_X = \mathbb{R}$ et déterminer M_X .
 - b) On suppose que X suit la loi de Poisson de paramètre $\lambda > 0$. Vérifier que $\mathcal{D}_X = \mathbb{R}$ et que : $\forall t \in \mathbb{R}, M_X(t) = e^{\lambda(e^t - 1)}$.
 - c) On suppose que X suit la loi exponentielle de paramètre $\lambda > 0$, de densité $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \geq 0 \\ 0 & \text{sinon} \end{cases}$.

Montrer que $\mathcal{D}_X =]-\infty, \lambda [$ et que $: \forall t \in]-\infty, \lambda [, M_X(t) = \frac{\lambda}{\lambda - t}]$

- 4. On suppose que X suit la loi normale centrée réduite de densité continue sur \mathbb{R} .
 - a) Établir la convergence de l'intégrale $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} \mathrm{e}^{tu}\,\mathrm{e}^{-\frac{u^2}{2}}\,\mathrm{d}u.$
 - b) En remarquant que $-\frac{1}{2}(u^2-2tu)=-\frac{1}{2}(u-t)^2+\frac{t^2}{2}$, montrer que $\mathcal{D}_X=\mathbb{R}$ et que : $\forall t\in\mathbb{R},\ M_X(t)=\mathrm{e}^{\frac{t^2}{2}}$.
 - c) On pose : $Y = \sigma X + m$, où $m \in \mathbb{R}$ et $\sigma > 0$. Quelle est la loi de Y?
 - d) En utilisant la question 2, déterminer M_Y .

5. Pour $n \in \mathbb{N}^*$, soit X_1, X_2, \dots, X_n , n variables aléatoires indépendantes et de même loi.

On pose :
$$S_n = \sum_{k=1}^n X_k$$
.

- a) Justifier que si $t \in \mathcal{D}_{X_1}$, alors $t \in \mathcal{D}_{S_n}$.
- b) Établir pour tout $t \in \mathcal{D}_{X_1}$, la relation : $M_{S_n}(t) = (M_{X_1}(t))^n$.

Partie II. Fonction génératrice des moments et théorème de la limite centrée.

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi qu'une variable aléatoire X admettant une espérance $m\in\mathbb{R}$ et une variance $\sigma^2>0$.

On pose :
$$Y = X - m$$
 et pour tout $k \in \mathbb{N}^*$, $Y_k = X_k - m$, et pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n X_k$ et $Z_n = \frac{S_n - nm}{\sigma \sqrt{n}}$.

- 6. Quelle est la limite en loi de la suite $(Z_n)_{n\in\mathbb{N}^*}$?
- 7. Dans cette question, on se propose d'établir le théorème de la limite centrée.
 - a) Montrer que si $t \in \mathcal{D}_X$, alors $\sigma \sqrt{n} t \in \mathcal{D}_{Z_n}$.
 - b) Établir pour tout réel t tel que $\frac{t}{\sigma\sqrt{n}} \in \mathcal{D}_X$, la relation : $M_{Z_n}(t) = \left(M_Y\left(\frac{t}{\sigma\sqrt{n}}\right)\right)^n$.
 - c) On rappelle que \mathcal{D}_Y contient un intervalle ouvert contenant 0, noté]-R,R[, avec R>0. Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $t \in]-R,R[$ et pour tout entier $n \geqslant n_0$, on a $\frac{t}{\sigma\sqrt{n}} \in \mathcal{D}_Y$.
 - d) Montrer que pour tout $t \in]-R, R[$, on a : $M_Y\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 + \frac{t^2}{2n} + o\left(\frac{1}{n}\right)$, lorsque n tend vers $+\infty$.
 - e) Montrer que pour tout $t \in]-R, R[$, on a : $\lim_{n \to +\infty} M_{Z_n}(t) = M_Z(t)$, où Z est une variable aléatoire dont on précisera la loi.
 - f) Retrouver ainsi le résultat de la question 6.

Conception : HEC Paris - Audencia Nantes

SCIENCES SOCIALES

Programme ENS/BL

jeudi 30 avril 2015, de 8 h. à 12 h.

École et déclassement social

N.B.: Il sera tenu compte des qualités de plan et d'exposition, ainsi que de la correction de la langue.

Il n'est fait usage d'aucun document et l'utilisation de tout matériel électronique n'est pas autorisée.