Corrigé de l'exercice 4

1. La fonction f est tout d'abord bien continue sur tout \mathbb{R} comme composée de telles fonctions, et (strictement) positive sur tout \mathbb{R} par stricte positivité de l'exponentielle et puisque $\beta > 0$.

Par ailleurs, sous réserve de convergence absolue :

$$\int_{-\infty}^{+\infty} f(t) dt = \frac{1}{2\beta} \int_{-\infty}^{\alpha} \exp\left(\frac{t - \alpha}{\beta}\right) dt + \frac{1}{2\beta} \int_{\alpha}^{+\infty} \exp\left(\frac{-t + \alpha}{\beta}\right) dt$$

$$= \frac{1}{2\beta} \lim_{Y \to -\infty} \left[\beta \cdot \exp\left(\frac{t - \alpha}{\beta}\right)\right]_{Y}^{\alpha} + \lim_{X \to +\infty} \frac{1}{2\beta} \left[-\beta \cdot \exp\left(\frac{\alpha - t}{\beta}\right)\right]_{\alpha}^{X}$$

$$= \lim_{Y \to -\infty} \frac{1}{2} \left(1 - \exp\left(\frac{Y - \alpha}{\beta}\right)\right) + \lim_{X \to +\infty} \frac{1}{2} \left(1 - \exp\left(\frac{\alpha - X}{\beta}\right)\right)$$

$$\int_{-\infty}^{+\infty} f(t) dt = \frac{1}{2} \cdot (1 - 0) + \frac{1}{2} \cdot (1 - 0) = 1$$

Ce qui achève de prouver que f est bien une densité de probabilité d'une variable aléatoire réelle.

2. La fonction de répartition, notée Ψ , de la loi $\mathcal{L}(0,1)$, est définie par :

$$\forall x \in \mathbb{R}, \quad \Psi(x) = \int_{-\infty}^{x} \frac{1}{2} e^{-|t|} dt$$

On distingue deux cas de figure, suivant le signe de x:

• Pour tout $x \in]-\infty;0]$:

$$\Psi(x) = \int_{-\infty}^{x} \frac{1}{2} e^{t} dt = \lim_{Y \to -\infty} \frac{1}{2} \left(e^{x} - e^{Y} \right) = \frac{1}{2} e^{x}$$

• Pour tout réel $x \in]0; +\infty[$:

$$\Psi(x) = \int_{-\infty}^{0} \frac{1}{2} e^{t} dt + \int_{0}^{x} \frac{1}{2} e^{-t} dt = \lim_{Y \to -\infty} \frac{1}{2} \left(e^{0} - e^{Y} \right) + \frac{1}{2} \left[-e^{-t} \right]_{0}^{x} = \frac{1}{2} - \frac{1}{2} e^{-x} + \frac{1}{2} = 1 - \frac{1}{2} e^{-x}$$

- 3. On suppose que X suit la loi $\mathcal{L}(0,1)$.
 - a) On obtient la loi de $Y = \beta X + \alpha$ par le calcul de sa fonction de répartition :

$$\forall x \in \mathbb{R}, \quad F_Y(x) = \mathbb{P}(Y \leqslant x) = \mathbb{P}(\beta X + \alpha \leqslant x) = \mathbb{P}(X \leqslant \frac{x - \alpha}{\beta}) \qquad \text{car } \beta > 0$$

Soit:
$$\forall x \in \mathbb{R}, \quad F_Y(x) = \Psi\left(\frac{x-\alpha}{\beta}\right).$$

Comme la densité d'une loi $\mathcal{L}(0,1)$ est continue sur tout \mathbb{R} , la fonction de répartition associée Ψ est de classe \mathcal{C}^1 sur tout \mathbb{R} : par composition avec la fonction affine $x \mapsto \frac{x-\alpha}{\beta}$, F_Y est bien de classe \mathcal{C}^1 sur \mathbb{R} , donc Y est une variable à densité, dont une densité est définie par dérivation de la composée F_Y :

$$\forall x \in \mathbb{R}, \quad f_Y(x) = \frac{1}{\beta} \Psi'\left(\frac{x-\alpha}{\beta}\right) = \frac{1}{\beta} f_X\left(\frac{x-\alpha}{\beta}\right) = \frac{1}{2\beta} \exp\left(-\frac{|x-\alpha|}{\beta}\right)$$

1

ce qui correspond bien à la densité d'une loi $\mathcal{L}(\alpha, \beta)$.

b) La fonction de répartition de la loi $\mathcal{L}(\alpha, \beta)$ est donc celle de $Y = \beta X + \alpha$, où X suit la loi $\mathcal{L}(0, 1)$, de sorte que :

$$\forall x \in \mathbb{R}, \quad F_Y(x) = \Psi\left(\frac{x - \alpha}{\beta}\right) = \begin{cases} \frac{1}{2} \exp\left(\frac{x - \alpha}{\beta}\right) & \text{si } \frac{x - \alpha}{\beta} \leqslant 0 \iff x \leqslant \alpha \\ 1 - \frac{1}{2} \exp\left(-\frac{x - \alpha}{\beta}\right) & \text{si } \frac{x - \alpha}{\beta} > 0 \iff x > \alpha \end{cases}$$

- 4. Espérance et variance.
 - a) On suppose que X suit la loi $\mathcal{L}(0,1)$. Cette variable aléatoire admet une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} \frac{x}{2} e^{-|x|} dx$, est absolument convergente.

En remarquant ici que la fonction $g: x \mapsto \frac{x}{2}e^{-|x|}$ est impaire :

 $\forall x \in \mathbb{R}, \ g(-x) = \frac{-x}{2}e^{-|-x|} = -\frac{x}{2}e^{-|x|} = g(x), \text{ et positive sur } \mathbb{R}_+, \text{ il suffit alors de prouver l'absolue convergence de l'intégrale} \int_0^{+\infty} \frac{x}{2}e^{-|x|}\mathrm{d}x = \frac{1}{2}\int_0^{+\infty}xe^{-x}\mathrm{d}x.$

Or $\int_0^{+\infty} xe^{-x} dx$ est l'intégrale définissant l'espérance d'une variable aléatoire T suivant la loi exponentielle de paramètre 1: elle est convergente (et vaut 1), donc X admet une espérance qui vaut :

$$E(X) = \int_{-\infty}^{0} x f_X(x) dx + \int_{0}^{+\infty} x f_X(x) dx = -\int_{0}^{+\infty} x f_X(x) dx + \int_{0}^{+\infty} x f_X(x) dx = 0$$

D'après le théorème de transfert : la variable aléatoire X admet un moment d'ordre 2 si et seulement si l'intégrale $\int_{-\infty}^{+\infty} \frac{x^2}{2} e^{-|x|} dx$ est absolument convergente.

Comme la fonction $h: x \mapsto \frac{x^2}{2}e^{-|x|}$ est positive et paire, il suffit de prouver la convergence simple de $\int_0^{+\infty} \frac{x^2}{2}e^{-x} dx$. On reconnaît à un facteur $\frac{1}{2}$ près, le moment d'ordre 2 de la variable T précédemment introduite, qui vaut d'après la formule de Koenig-Huygens :

$$E(T^2) = V(T) + E(T)^2 = 1 + 1^2 = 2.$$

Ainsi, X admet un moment d'ordre 2 qui vaut :

$$E(X^2) = 2 \int_0^{+\infty} \frac{x^2}{2} e^{-x} dx = \int_0^{+\infty} x^2 e^{-x} dx = E(T^2) = 2$$

La variable aléatoire X admet donc une variance qui vaut : $V(X) = E(X^2) - E(X)^2 = 2 - 0 = 2$.

b) D'après ce qui précède, la variable aléatoire $Y = \beta X + \alpha$ suit la loi $\mathcal{L}(\alpha, \beta)$ et admet alors une espérance et une variance données par :

$$E(Y) = \beta E(X) + \alpha = \alpha$$
 et $V(Y) = \beta^2 V(X) = 2\beta^2$

par linéarité de l'espérance, et d'après les propriétés de la variance.

- 5. Simulation à partir d'une loi exponentielle. Soit U une variable aléatoire qui suit la loi exponentielle de paramètre 1 et V une variable aléatoire qui suit la loi de Bernoulli de paramètre $\frac{1}{2}$, indépendante de U.
 - a) Pour tout réel x, le calcul de $P(X \le x)$ se fait via la formule des probabilités totales, appliquée avec le s.c.e. ([V=0], [V=1]):

$$\mathbb{P}(X \leqslant x) = \mathbb{P}([V = 0] \cap [(2V - 1)U \leqslant x]) + \mathbb{P}([V = 1] \cap [(2V - 1)U \leqslant x])$$

$$= \mathbb{P}([V = 0] \cap [-U \leqslant x]) + \mathbb{P}([V = 1] \cap [U \leqslant x])$$

$$= \mathbb{P}(V = 0) \times \mathbb{P}(U \geqslant -x) + \mathbb{P}(V = 1) \times \mathbb{P}(U \leqslant x) \quad \text{par indépendance de } U \text{ et } V$$

$$= \frac{1}{2}(1 - F_U(-x)) + \frac{1}{2}F_U(x)$$

On distingue alors deux cas, suivant le signe de x:

$$F_X(x) = \begin{cases} \frac{1}{2}(1-0) + \frac{1}{2}(1-e^{-x}) = 1 - \frac{1}{2}e^{-x} & \text{si } x > 0\\ \frac{1}{2}(1-1+e^x) + 0 = \frac{1}{2}e^x & \text{si } x \leqslant 0 \end{cases}$$

On retrouve exactement l'expression de Ψ , ce qui permet de conclure que X suit bien la loi $\mathcal{L}(0,1)$.

b) Le principe du script ci-dessous est alors simple : on simule une réalisation de U et une de V via les fonctions de simulations usuelles connues en Scilab : le calcul de X=(2V-1)U correspond alors à une simulation de la loi $\mathcal{L}(0,1)$, et celui de $Y=\beta X+\alpha$ correspond à la simulation de la loi $\mathcal{L}(\alpha,\beta)$.

- 6. Une autre méthode de simulation, issue du sujet HEC E 2007.
 - a) Le fait que Ψ soit la fonction de répartition d'une variable à densité comprend déjà le fait que cette fonction soit continue sur \mathbb{R} , avec $\lim_{x\to -\infty} \Psi(x) = 0$ et $\lim_{x\to +\infty} \Psi(x) = 1$.

La densité $f_X: x \mapsto \frac{1}{2}e^{-|x|}$ étant continue sur \mathbb{R} , Ψ est elle-même de classe C^1 sur \mathbb{R} tout entier, de dérivée cette même fonction f_X qui est de plus strictement positive sur \mathbb{R} .

Bref, Ψ est continue, strictement croissante sur \mathbb{R} , donc réalise une bijection de \mathbb{R} dans l'intervalleimage]0,1[.

N.B.: c'est la stricte croissance de Ψ sur $\mathbb R$ qui assure que les limites en $-\infty$ et $+\infty$ ne sont jamais atteintes.

b) Une question difficile à aborder sans indications préliminaires... Il faut connaître en détail le raisonnement ci-dessous!

On sait que Ψ réalise une bijection de \mathbb{R} dans]0,1[; définissons alors la variable aléatoire $Y=\Psi(X)$: ainsi, $Y(\Omega)=]0,1[$ et :

 $\forall x \in]0,1[, F_Y(x) = P(Y \leqslant x) = P(\Psi(X) \leqslant x) = P(X \leqslant \Psi^{-1}(x)) = \Psi(\Psi^{-1}(x)) = x \text{ par definition et stricte croissance de } \Psi.$

Vu l'univers-image de Y, on a bien sûr : $F_Y(x) = 0$ si $x \leq 0$ et $F_Y(x) = 1$ si $x \geq 1$,

Donc $Y = \Psi(X)$ suit la loi uniforme sur]0,1[.

Réciproquement, si Z est une variable aléatoire suivant la loi uniforme à densité sur]0,1[, et si on pose $W=\Psi^{-1}(Z)$:

 $\forall x \in \mathbb{R}, \ F_W(x) = P(\Psi^{-1}(Z) \leqslant x) = P(Z \leqslant \Psi(x)) = \Psi(x) \text{ car } \Psi^{-1} \text{ est aussi strictement croissante}$ et car $\Psi(x) \in]0,1[$ pour tout $x \in \mathbb{R}$.

En clair : si $Z \hookrightarrow \mathcal{U}(]0,1[)$, alors $\Psi^{-1}(Z) \hookrightarrow \mathcal{L}(0,1)$ puisque cette v.a.r. a la même fonction de répartition que X.

c) Le tableau de variation de Ψ permet d'identifier deux sous-intervalles distincts pour le calcul de sa bijection réciproque :

x	$-\infty$	0	$+\infty$
Ψ	0 -	1/2	→ 1

• Pour tout réel $x \in]0,1/2]$: son unique antécédent $y = \Psi^{-1}(x)$ appartient à $]-\infty,0]$, comme unique solution de l'équation :

$$\Psi(y) = x \iff \frac{1}{2}e^y = x \iff e^y = 2x \iff y = \ln(2x).$$

• Pour tout réel $x \in [1/2, 1[$: son unique antécédent $y = \Psi^{-1}(x)$ appartient cette fois à $[0, +\infty[$, comme unique solution de l'équation :

$$\Psi(y) = x \iff 1 - \frac{1}{2} \cdot e^{-y} = x \iff 1 - x = \frac{1}{2} \cdot e^{-y} \iff 2(1 - x) = e^{-y} \iff y = -\ln(2(1 - x)).$$

On a bien montré que :
$$\forall x \in]0,1[, \ \Psi^{-1}(x) = \begin{cases} \ln(2x) & \text{si } 0 < x \leqslant 1/2 \\ -\ln(2(1-x)) & \text{si } 1/2 \leqslant x < 1 \end{cases}$$

d) On déduit de tout ce qui précède, une simulation simple de la loi $\mathcal{L}(0,1)$:

```
function y = Laplace()
Z = rand()
if Z <= 0.5 then
y = log(2*Z)
else
y = -log(2*(1-Z))
end
endfunction</pre>
```

9