PREMIER PROBLÈME

<u>Remarque</u> Je ne ferai pas, dans ce qui suit, l'identification des éléments de $\mathcal{M}_{n,1}(\mathbb{R})$ aux éléments de \mathbb{R}^n proposée par le texte car elle n'apporte rien ici. Le produit scalaire utilisé sera donc le produit scalaire canonique de $\mathcal{M}_{n,1}(\mathbb{R})$.

Je conserverai le parti pris de ne pas parenthèser les expressions du type $\sin k\theta$.

1. A_3 est une matrice symétrique et réelle donc A_3 est diagonalisable ... A_n aussi.

Cherchons les valeurs propres de A_3 . Soit λ un réel. Déterminons une réduite de Gauss de $A_3 - \lambda I_3$.

$$A_{3} - \lambda I_{3} = \begin{pmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 1 \\ 0 & 1 & -\lambda \end{pmatrix}. \text{ Les opérations } L_{1} \leftrightarrow L_{2} \text{ et } L_{2} \leftarrow L_{2} + \lambda L_{1} \text{ donnent successivement :}$$

$$\begin{pmatrix} 1 & -\lambda & 1 \\ -\lambda & 1 & 0 \\ 0 & 1 & -\lambda \end{pmatrix} \text{ et } \begin{pmatrix} 1 & -\lambda & 1 \\ 0 & 1-\lambda^{2} & \lambda \\ 0 & 1 & -\lambda \end{pmatrix}. \text{ Les opérations } L_{2} \leftrightarrow L_{3} \text{ et } L_{3} \leftarrow L_{3} + (\lambda^{2} - 1)L_{2} \text{ donnent}$$

$$\text{successivement :} \begin{pmatrix} 1 & -\lambda & 1 \\ 0 & 1 & -\lambda \\ 0 & 1-\lambda^{2} & \lambda \end{pmatrix} \text{ et } \begin{pmatrix} 1 & -\lambda & 1 \\ 0 & 1 & -\lambda \\ 0 & 0 & -\lambda(\lambda^{2} - 1) + \lambda \end{pmatrix}.$$

$$\begin{pmatrix} 1 & -\lambda & 1 \\ 0 & 1 & -\lambda \\ 0 & 0 & -\lambda(\lambda^2 - 2) \end{pmatrix}$$
 est alors une réduite de Gauss de $A_3 - \lambda I_3$.

Ainsi $A_3 - \lambda I_3$ est non inversible si et seulement si $-\lambda(\lambda^2 - 2) = 0$; c'est à dire si et seulement si λ vaut 0, $\sqrt{2}$ ou $-\sqrt{2}$.

Les valeurs propres de A_3 sont donc: $\sqrt{2}$, 0 et $-\sqrt{2}$

Cherchons les sous-espaces propres de A_3 . Soit $X=\begin{pmatrix}x\\y\\z\end{pmatrix}$ un élément de $\mathcal{M}_{3,1}(\mathbb{R}).$

$$A_3X = 0 \Leftrightarrow \begin{cases} y = 0 \\ x + z = 0 \Leftrightarrow y = 0 \text{ et } z = -x. \\ y = 0 \end{cases}$$

Le sous-espace propre de A_3 associé à la valeur propre 0 est la droite vectorielle de $\mathcal{M}_{3,1}(\mathbb{R})$ engendrée par $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

Soit ε un élément de $\{-1,1\}$. Notons que : $\varepsilon^2 = 1$

$$A_3X = \varepsilon\sqrt{2} \; X \Leftrightarrow \left\{ \begin{array}{l} y = \varepsilon\sqrt{2} \; x \\ x + z = \varepsilon\sqrt{2} \; y \; \Leftrightarrow \; \left\{ \begin{array}{l} y = \varepsilon\sqrt{2} \; x \\ z = x \\ 2x = \varepsilon\sqrt{2} \; y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = \varepsilon\sqrt{2} \; x \\ z = x \\ y = \frac{2}{\varepsilon\sqrt{2}} \; x = \frac{\sqrt{2}}{\varepsilon^2} \; \varepsilon x = \varepsilon\sqrt{2} \; x \end{array} \right. .$$

$$A_3X = \varepsilon\sqrt{2} \ X \Leftrightarrow z = x \text{ et } y = \varepsilon\sqrt{2} \ x.$$

Le sous-espace propre de A_3 associé à la valeur propre $\sqrt{2}$ (resp. $-\sqrt{2}$) est la droite vectorielle de $\mathcal{M}_{3,1}(\mathbb{R})$ engendrée par $\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$ (resp. $\begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$).

 $\mathcal{B} = \left(\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \right) \text{ est une famille de } \mathcal{M}_{3,1}(\mathbb{R}) \text{ constituée de trois vecteurs propres de } A_3$ associés à trois valeurs propres distinctes $\sqrt{2}$, 0 et $-\sqrt{2}$; \mathcal{B} est donc une famille libre de trois vecteurs de $\mathcal{M}_{3,1}(\mathbb{R})$ qui est de dimension 3.

Ainsi
$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \right)$$
 est une base de $\mathcal{M}_{3,1}(\mathbb{R})$

Notons P la matrice de passage de la base canonique de $\mathcal{M}_{3,1}(\mathbb{R})$ à \mathcal{B} et posons $D = P^{-1}A_3P$. D'après ce qui précède:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & -1 & 1 \end{pmatrix} \text{ est inversible comme matrice de passage, } D = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sqrt{2} \end{pmatrix} \text{ est diagonale et } A_3 = PDP^{-1} \text{ .}$$

<u>Exercice</u> Déterminer P^{-1} . Trouver une matrice orthogonale Q telle que: $A_3 = QD^tQ$.

2. Le cours nous indique que l'ensemble S'_{θ} des suites réelles $(s_k)_{k\in\mathbb{N}}$ telles que pour tout entier naturel k, $s_{k+2} - 2\cos\theta$ $s_{k+1} + s_k = 0$ est un espace vectoriel sur \mathbb{R} de dimension 2.

L'équation caractéristique attachée aux éléments de S'_{θ} est $x^2 - 2\cos\theta$ x + 1 = 0. Cette équation admet deux solutions complexes et conjuguées : $e^{i\theta}$ et $e^{-i\theta}$. Ainsi $\left((\cos k\theta)_{k\in\mathbb{N}}, (\sin k\theta)_{k\in\mathbb{N}}\right)$ est une base de S'_{θ} .

Soit $(s_k)_{k\in\mathbb{N}}$ un élément de S_{θ} . $(s_k)_{k\in\mathbb{N}}$ est encore un élément de S'_{θ} . Par conséquent il existe deux réels α et β tel que, pour tout élément k de \mathbb{N} : $s_k = \alpha \cos k\theta + \beta \sin k\theta$. On a alors $0 = s_0 = \alpha$ et $s_1 = \alpha \cos \theta + \beta \sin \theta$; donc $\alpha = 0$ et $\beta = s_1 \frac{1}{\sin \theta}$.

Ainsi si $(s_k)_{n\in\mathbb{N}}$ est un élément de S_θ : $\forall k\in\mathbb{N},\ s_k=s_1\ \frac{\sin k\theta}{\sin \theta}$

En particulier $(s_k)_{k\in\mathbb{N}}$ appartient à la droite vectorielle de S'_{θ} engendrée par la suite $(\sin k\theta)_{k\in\mathbb{N}}$.

Réciproquement soit $(s_k)_{k\in\mathbb{N}}$ un élément de cette droite. Il existe un réel β tel que $\forall k\in\mathbb{N},\ s_k=\beta$ sin $k\theta$.

Par conséquent $(s_k)_{k\in\mathbb{N}}$ appartient à S'_{θ} et $s_0 = \beta \sin(0\theta) = 0$; donc $(s_k)_{k\in\mathbb{N}}$ est un élément de S_{θ} .

Finalement S_{θ} est la droite vectorielle de S'_{θ} engendrée par la suite $(\sin k\theta)_{k\in\mathbb{N}}$. $S_{\theta} = \text{Vect}\left((\sin k\theta)_{k\in\mathbb{N}}\right)$.

Ainsi S_{θ} est un espace vectoriel réel de dimension 1.

3. a.
$$\lambda$$
 est une valeur propre de A_n et $X=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$ un vecteur propre de A_n associé à λ .

$$A_nX = \lambda X \text{ donc} \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}; \text{ soit encore} \begin{cases} x_2 = \lambda x_1 \\ x_1 + x_3 = \lambda x_2 \\ \dots \\ x_{k-1} + x_{k+1} = \lambda x_k \\ \dots \\ x_{n-1} = \lambda x_n \end{cases}$$

Ceci donne enfin :
$$\begin{cases} \bullet & \lambda x_1 = x_2 \\ \bullet & \forall k \in \{2, \dots, n-1\}, \ \lambda x_k = x_{k-1} + x_{k+1} \\ \bullet & \lambda x_n = x_{n-1} \end{cases}.$$

Observons que ce système est exactement équivalent à : $A_nX = \lambda X$.

Notons que $m = \max_{1 \le k \le n} |x_k|$ est strictement positif car X n'est pas nul.

$$|\lambda||x_1| = |\lambda x_1| = |x_2| \le m \le 2m \text{ et } |\lambda||x_n| = |\lambda x_n| = |x_{n-1}| \le m \le 2m.$$

De plus si k appartient à $\{2, \ldots, n-1\}$: $|\lambda||x_k| = |\lambda x_k| = |x_{k-1} + x_{k+1}| \le |x_{k-1}| + |x_{k+1}| \le m+m = 2m$.

Finalement pour tout entier k de $\{1, \ldots, n\}, |\lambda| |x_k| \leq 2m$

Ainsi $\max_{1\leqslant k\leqslant n}(|\lambda||x_k|)\leqslant 2m$ donc $|\lambda|\max_{1\leqslant k\leqslant n}|x_k|\leqslant 2m$. Ceci donne encore $|\lambda|m\leqslant 2m$ donc $|\lambda|\leqslant 2$ car m est strictement positif.

Par conséquent $\Big|$ si λ est une valeur propre de $A:|\lambda|\leqslant 2$

<u>Exercice</u> Soit $A = (a_{ij})$ un élément de $\mathcal{M}_n(\mathbb{C})$.

Pour tout élément i de [1, n] on pose $D_i = \{z \in \mathbb{C} \mid |z - a_{ii}| \leqslant \sum_{\substack{1 \leqslant j \leqslant n \\ j \neq i}} |a_{ij}|\}$. Montrer que l'ensemble des valeurs propres de A est contenu dans $D_1 \cup D_2 \cup \cdots \cup D_n$ (disques de Gershgorin). Retrouver le résultat précédent.

b. Posons pour tout élément t de $]0,\pi[$, $u(t)=2\cos t$. u est continue et dérivable sur $]0,\pi[$.

 $\forall t \in]0, \pi[, u'(t) = -2\sin t < 0.$ Ainsi u est continue et strictement décroissante sur l'intervalle $]0, \pi[$.

 $u \text{ définit alors une bijection de }]0,\pi[\text{ sur }] \lim_{t\to\pi}(2\cos t),\lim_{t\to0}(2\cos t)[=]-2,2[.$

Comme λ est élément de] -2,2[, il existe un unique élément θ de] $0,\pi[$ tel que $\lambda=u(\theta)=2\cos\theta.$

D'après la question 2, la suite $(s_k)_{k\in\mathbb{N}}$ de S_{θ} déterminée par $s_1=x_1$ est définie par : $\forall k\in\mathbb{N},\ s_k=x_1\frac{\sin k\theta}{\sin \theta}$. Montrons alors à l'aide d'une récurrence faible que : $\forall k\in\{1,\ldots,n\},\ s_k=x_k$.

La propriété est vraie pour k=1 car $s_1=x_1$. Supposons la vraie jusqu'à k, k élément de $\{1,\ldots,n-1\}$ et montrons la pour k+1. $s_{k+1}=2\cos\theta$ s_k-s_{k-1} .

Si
$$k = 1$$
: $s_{k+1} = s_2 = 2\cos\theta \ s_1 - s_0 = \lambda s_1 = \lambda x_1 = x_2 = x_{k+1}$;

Si $k \ge 2$, d'après l'hypothèse de récurrence : $s_{k+1} = 2\cos\theta \ s_k - s_{k-1} = 2\cos\theta \ x_k - x_{k-1} = x_{k+1}$. Ceci achève la récurrence.

Finalement
$$\forall k \in \{1, \dots, n\}, \ s_k = x_k$$

$$s_{n+1} = 2\cos\theta \ s_n - s_{n-1} = 2\cos\theta \ x_n - x_{n-1} = \lambda x_n - x_{n-1} = 0.$$
 $s_{n+1} = 0$

Rappelons que $s_{n+1} = x_1 \frac{\sin(n+1)\theta}{\sin \theta}$. Ainsi $x_1 \times \sin(n+1)\theta = 0$. Donc $x_1 = 0$ ou $\sin(n+1)\theta = 0$.

Supposons x_1 nul. La suite $(s_k)_{k\in\mathbb{N}}$ est alors la suite nulle. Donc $\forall k\in\{1,\ldots,n\},\ x_k=s_k=0$. Ce qui donne X=0!

 x_1 n'étant pas nul $\sin(n+1)\theta$ l'est. $(n+1)\theta$ est alors un multiple de π . Il existe un élément p de \mathbb{Z} tel que : $(n+1)\theta = p\pi$. Alors $\theta = \frac{p\pi}{n+1}$ et comme θ appartient à $]0,\pi[:p]$ appartient à $\{1,\ldots,n\}$.

Il existe un entier
$$p$$
 de $\{1,\ldots,n\}$ tel que $\theta = \frac{p\pi}{n+1}$

c. Soit p un élément de $\{1,\ldots,n\}$. Notons déjà que X_p n'est pas nul car sa première composante $\sin\theta_p$ est différente de 0 $(\theta_p \in]0,\pi[)$. Dès lors montrons que $A_nX_p=\lambda_pX_p$.

Il suffit de prouver que :
$$\begin{cases} \bullet & \sin 2\theta_p = \lambda_p \sin \theta_p \\ \bullet & \forall k \in \{2, \dots, n-1\}, \ \sin(k-1)\theta_p + \sin(k+1)\theta_p = \lambda_p \sin k\theta_p \\ \bullet & \sin(n-1)\theta_p = \lambda_p \sin n\theta_p \end{cases}$$

- $\lambda_p \sin \theta_p = 2 \cos \theta_p \sin \theta_p = \sin 2\theta_p$
- Si p est dans $\{2, \ldots, n-1\}$, $\lambda_p \sin k\theta_p = 2\cos\theta_p \sin k\theta_p = 2\sin k\theta_p \cos\theta_p = \sin(k\theta_p + \theta_p) + \sin(k\theta_p \theta_p)$. $\lambda_p \sin k\theta_p = \sin(k-1)\theta_p + \sin(k+1)\theta_p.$
- $\lambda_p \sin n\theta_p = 2\cos\theta_p \sin n\theta_p = 2\sin n\theta_p \cos\theta_p = \sin(n\theta_p + \theta_p) + \sin(n\theta_p \theta_p)$.

$$\lambda_p \sin n\theta_p = \sin(n+1)\theta_p + \sin(n-1)\theta_p = \sin p\pi + \sin(n-1)\theta_p = \sin(n-1)\theta_p.$$

Ceci achève de prouver que : $A_n X_p = \lambda_p X_p$.

Donc pour tout élément p de $\{1,\ldots,n\}$, λ_p est une valeur propre de A_n et X_p un vecteur propre associé

d. Pour tout élément
$$p$$
 de $\{1,\ldots,n\}$, $\lambda_p=2\cos\theta_p=2\cos\left(\frac{p\pi}{n+1}\right)=u\left(\frac{p\pi}{n+1}\right)$.

Comme $\frac{\pi}{n+1}$, $\frac{2\pi}{n+1}$, ..., $\frac{n\pi}{n+1}$ sont n réels deux à deux distincts de $]0,\pi[$ et que u est injective sur cet intervalle, $\lambda_1, \lambda_2, ..., \lambda_n$ sont n réels deux à deux distincts.

Ainsi $\lambda_1, \lambda_2, ..., \lambda_n$ sont n valeurs propres deux à deux distinctes de A_n qui est une matrice d'ordre n et qui a donc au plus n valeurs propres deux à deux distinctes.

Par conséquent $\left[\{\lambda_1,\lambda_2,\dots,\lambda_n\}$ est l'ensemble des valeurs propres de A_n

 (X_1, X_2, \dots, X_n) sont n vecteurs propres de A_n associés à n valeurs propres deux à deux distinctes donc (X_1, X_2, \dots, X_n) est une famille libre de n vecteurs de $\mathcal{M}_{n,1}(\mathbb{R})$ qui est un espace vectoriel de dimension n.

Finalement
$$(X_1, X_2, \dots, X_n)$$
 est une base de $\mathcal{M}_{n,1}(\mathbb{R})$

4. U_n n'est autre que la matrice de passage de la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ à la base (X_1, X_2, \dots, X_n) . Donc U_n est inversible.

Comme (X_1, X_2, \dots, X_n) est une base de $\mathcal{M}_{n,1}(\mathbb{R})$ constituée de vecteurs propres de A_n respectivement as-

sociés aux valeurs propres $\lambda_1, \lambda_2, ..., \lambda_n$: $D_n = U_n^{-1} A_n U_n \text{ est la matrice diagonale } \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$

5. a. Soit p et q deux éléments de $\{1, \ldots, n\}$.

 A_n est une matrice symétrique donc : $\langle AX_p, X_q \rangle = \langle X_p, AX_q \rangle$.

Ainsi
$$<\lambda_p X_p, X_q> = < X_p, \lambda_q X_q>$$
. C'est à dire $\lambda_p < X_p, X_q> = \lambda_q < X_p, X_q>$.

$$\text{Par conséquent}: \boxed{\lambda_p{}^t X_p X_q = \lambda_q{}^t X_p X_q} \text{. Ceci donne encore}: (\lambda_p - \lambda_q) < X_p, X_q >= 0.$$

Dès lors si nous supposons $p \neq q, \lambda_p$ et λ_q sont dictincts et : $< X_p, X_q > = 0$; X_p et X_q sont donc orthogonaux.

$$(X_1, X_2, \dots, X_n)$$
 est une base orthogonale de $\mathcal{M}_{n,1}(\mathbb{R})$.

<u>Remarque</u> Ce n'est pas un scoop. A_n étant une matrice symétrique réelle, ses sous-espaces propres sont orthogonaux et donc la base $(X_1, X_2, ..., X_n)$ est orthogonale non?

Soient p et q deux éléments distincts de $\{1, \ldots, n\}$.

$$\sum_{k=1}^{n} \sin k\theta_{p} \sin k\theta_{q} = (\sin \theta_{p}, \sin 2\theta_{p}, \dots, \sin n\theta_{p}) \begin{pmatrix} \sin \theta_{q} \\ \sin 2\theta_{q} \\ \vdots \\ \sin n\theta_{q} \end{pmatrix} = {}^{t}X_{p}X_{q} = \langle X_{p}, X_{q} \rangle = 0.$$

Donc
$$\forall (p,q) \in \{1,\ldots,n\}^2, \ p \neq q \Rightarrow \sum_{k=1}^n \sin k\theta_p \sin k\theta_q = 0$$

b. Soit p un élément de $\{1,\ldots,n\}$. $\sum_{k=0}^{n}\cos(2k\theta_{p})$ est la partie réelle de : $\sum_{k=0}^{n}e^{i(2k\theta_{p})}$. Or $e^{i(2\theta_{p})}$ est différent de 1 car $2\theta_{p}=\frac{2p\pi}{n+1}$ n'est pas un multiple de 2π puisque p appartient à $\{1,\ldots,n\}$; ainsi :

$$\sum_{k=0}^{n} e^{i(2k\theta_p)} = \sum_{k=0}^{n} \left(e^{i(2\theta_p)} \right)^k = \frac{1 - (e^{i(2\theta_p)})^{n+1}}{1 - e^{i(2\theta_p)}}.$$

Remarquons alors que: $1 - (e^{i(2\theta_p)})^{n+1} = 1 - e^{i(2p\pi)} = 0$. Ainsi: $\sum_{k=0}^{n} e^{i(2k\theta_p)} = 0$.

Finalement
$$\forall p \in \{1, \dots, n\}, \sum_{k=0}^{n} \cos(2k\theta_p) = 0$$

Soit
$$p$$
 un élément de $\{1,\ldots,n\}$. $\sum_{k=1}^n \sin^2(k\theta_p) = \sum_{k=1}^n \frac{1-\cos(2k\theta_p)}{2} = \frac{n}{2} - \frac{1}{2}\sum_{k=1}^n \cos(2k\theta_p)$.

Ceci donne encore :
$$\sum_{k=1}^{n} \sin^2(k\theta_p) = \frac{n}{2} - \frac{1}{2} \sum_{k=0}^{n} \cos(2k\theta_p) + \frac{1}{2} = \frac{n+1}{2}$$
.

Donc
$$\forall p \in \{1, \dots, n\}, \sum_{k=1}^{n} \sin^2(k\theta_p) = \frac{n+1}{2}$$
.

c. Posons $U_n^2 = (v_{pq})$. Soient p et q deux éléments de $\{1, \ldots, n\}$.

$$v_{pq} = \sum_{k=1}^{n} u_{pk} u_{kq} = \sum_{k=1}^{n} \sin \frac{pk\pi}{n+1} \sin \frac{kq\pi}{n+1} = \sum_{k=1}^{n} \sin k\theta_{p} \sin k\theta_{q}.$$

Ainsi v_{pq} vaut 0 si p et q sont distincts et $\frac{n+1}{2}$ s'ils sont égaux. Donc $U_n^2 = \frac{n+1}{2} I_n$

En particulier: $\left(\frac{2}{n+1} U_n\right) U_n = I_n \text{ donc } U_n^{-1} = \frac{2}{n+1} U_n.$

Alors $D_n = U_n^{-1} A_n U_n$ donne $A_n = U_n D_n U_n^{-1} = U_n D_n \left(\frac{2}{n+1} U_n \right)$.

Finalement : $A_n = \frac{2}{n+1} U_n D_n U_n$.

Remarque On pourra pour compléter ce problème visiter ou revisiter HEC 90 MI et ESSEC 96 MI.

DEUXIÈME PROBLÈME

1. a. et **b.** $t \to 1 - t$ est de classe \mathcal{C}^1 et strictement positive sur]0,1[et ln est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} ; par composition $t \to \ln(1-t)$ est de classe \mathcal{C}^1 sur]0,1[. Comme $t \to -\frac{1}{t}$ est de classe \mathcal{C}^1 sur]0,1[, par produit f est de classe \mathcal{C}^1 sur]0,1[.

Montrons que f est continue en 0. $-\frac{\ln(1-t)}{t} \sim -\frac{-t}{t} = 1$ car $\ln(1+x) \sim x$.

Par conséquent : $\lim_{t\to 0} \left(-\frac{\ln(1-t)}{t}\right) = 1 = f(0)$. Ainsi f est continue en 0

$$\forall t \in]0,1[,\ f'(t) = -\frac{1}{t^2} \left[\frac{-1}{1-t} \times t - \ln(1-t) \right] \text{ donc } \boxed{\forall t \in]0,1[,\ f'(t) = \frac{1}{t^2} \left[\ln(1-t) + \frac{t}{1-t} \right]}$$

c.
$$f'(t) = \frac{1}{t^2(1-t)} [(1-t)\ln(1-t) + t] \sim \frac{1}{t^2} [(1-t)\ln(1-t) + t].$$

Cherchons un équivalent en 0 de $t \to (1-t)\ln(1-t) + t$. Pour cela utilisons des développements limités d'ordre 2 au voisinage de 0.

$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$
. $\ln(1-t) = -t - \frac{t^2}{2} + o(t^2)$ et $1-t = 1-t + o(t^2)$.

Donc
$$(1-t)\ln(1-t) = (1-t)(-t-\frac{t^2}{2}) + o(t^2) = -t-\frac{t^2}{2} + t^2 + o(t^2) = -t+\frac{t^2}{2} + o(t^2).$$

Ceci donne encore : $(1-t)\ln(1-t)+t=\frac{t^2}{2}+\mathrm{o}(t^2)$. Par conséquent $(1-t)\ln(1-t)+t \underset{0}{\sim} \frac{t^2}{2}$.

Finalement: $f'(t) \sim \frac{1}{t^2} [(1-t)\ln(1-t) + t] \sim \frac{1}{t^2} \times \frac{t^2}{2} = \frac{1}{2}$

Ainsi
$$\lim_{t\to 0} f'(t) = \frac{1}{2}$$

f est continue en 0, de classe \mathcal{C}^1 sur]0,1[et f' admet une limite finie en 0. Le théorème de la limite de la dérivée nous permet de dire que f est de classe \mathcal{C}^1 sur [0,1[. Notons encore que l'on a $f'(0)=\frac{1}{2}$.

d. La fonction ln est concave sur \mathbb{R}^{+*} puisque sa dérivée seconde est négative. Sa courbe représentative est au-dessous de toutes ses tangentes, en particulier de sa tangente au point d'abscisse 1.

Donc
$$\forall x \in \mathbb{R}^{+*}$$
, $\ln x \le (\ln' 1)(x - 1) + \ln 1 = x - 1$.

Ainsi:
$$\forall t \in]0, 1[, -\ln(1-t) = \ln\frac{1}{1-t} \le \frac{1}{1-t} - 1 = \frac{t}{1-t}$$

Il vient alors sans difficulté :
$$\forall t \in]0,1[, \ln(1-t) + \frac{t}{1-t} \geqslant 0]$$

e. Ce qui précède montre que : $\forall t \in]0,1[,\ f'(t)=\frac{1}{t^2}\left[\ln(1-t)+\frac{t}{1-t}\right]\geqslant 0.$

Comme
$$f'(0) = \frac{1}{2} : \forall t \in [0, 1[, f'(t) \ge 0.]$$
 f est croissante sur $[0, 1[]$

$$\lim_{t \to 1} -\frac{1}{t} = -1 \text{ et } \lim_{t \to 1} \ln(1-t) = -\infty. \text{ Donc } \boxed{\lim_{t \to 1} f(t) = +\infty}.$$

$$\begin{array}{c|cccc}
t & 0 & 1 \\
\hline
f'(t) & + & & \\
\hline
f & & & +\infty \\
1 & & & \\
\end{array}$$

Voir l'allure de la courbe représentative de f à la fin de la question 2.

2. a. Si x est un élément de $[0,1[, f \text{ est continue sur } [0,x] \text{ donc } \int_0^x f(t) dt$ existe.

Montrons maintenant que $\int_0^1 f(t) dt$ existe.

f est continue et positive sur [0,1[, et équivalente au voisinage de 1 à $t \to -\ln(1-t)$. Ainsi $\int_0^1 f(t) dt$ existe dès que $\int_0^1 \ln(1-t) dt$ existe. Montrons la convergence de cette dernière intégrale. Soit α un élément de [0,1[.

Une intégration par parties simple
$$(u'(t) = 1, v(t) = \ln(1-t), u(t) = t-1 \text{ et } v'(t) = \frac{-1}{1-t})$$
 donne
$$\int_0^\alpha \ln(1-t) \, \mathrm{d}t = \left[(t-1) \ln(1-t) \right]_0^\alpha - \int_0^\alpha (t-1) \frac{-1}{1-t} \, \mathrm{d}t = (\alpha-1) \ln(1-\alpha) - \int_0^\alpha 1 \, \mathrm{d}t.$$

$$\int_0^\alpha \ln(1-t) \, \mathrm{d}t = -(1-\alpha) \ln(1-\alpha) - \alpha.$$

Ainsi
$$\lim_{\alpha \to 1} \int_0^\alpha \ln(1-t) dt = \lim_{\alpha \to 1} \left(-(1-\alpha) \ln(1-\alpha) - \alpha \right) = -1 \operatorname{car} \lim_{\alpha \to 1} \left((1-\alpha) \ln(1-\alpha) \right) = 0.$$

Par conséquent $\int_0^1 \ln(1-t) dt$ existe et vaut -1; donc $\int_0^1 f(t) dt$ existe.

Finalement
$$\int_0^x f(t) dt$$
 existe pour tout élément x de $[0,1]$

b. La restriction de g à [0,1[est la primitive sur l'intervalle [0,1[de la fonction continue f, qui prend la valeur 0 en 0.

Ainsi g est dérivable sur [0,1[et $\forall x \in [0,1[,\ g'(x)=f(x)]$

f étant de classe \mathcal{C}^1 sur [0,1[, il en est de même pour g'. Alors g est de classe \mathcal{C}^2 sur [0,1[

Montrons que g est continue en 1. $\int_0^1 f(t) dt$ converge, donc par définition :

$$\lim_{x \to 1} \int_0^x f(t) \, \mathrm{d}t = \int_0^1 f(t) \, \mathrm{d}t = g(1).$$

Ainsi g est continue en 1

c. Soit x un élément de]0,1[. $\frac{g(x)-g(1)}{x-1}=\frac{1}{x-1}\left[\int_0^x f(t)\,\mathrm{d}t-\int_0^1 f(t)\,\mathrm{d}t\right]=-\frac{1}{x-1}\int_x^1 f(t)\,\mathrm{d}t.$

$$\frac{g(x) - g(1)}{x - 1} = \frac{1}{1 - x} \int_{x}^{1} f(t) dt.$$
 Minorons cette dernière intégrale.

Soit α un élément de]x,1[. $\forall t\in[x,\alpha],\ -\ln(1-t)\geqslant0$ et $\frac{1}{t}\geqslant1$; donc $\forall t\in[x,\alpha],\ f(t)\geqslant-\ln(1-t)$.

Comme $\alpha > x$ il vient en intégrant entre α et $x : \int_x^{\alpha} f(t) dt \ge \int_x^{\alpha} [-\ln(1-t)] dt$. Calculons cette dernière intégrale en faisant une intégration par parties analogue à celle faite dans a).

$$\int_{x}^{\alpha} \left[-\ln(1-t) \right] dt = \left[-(t-1)\ln(1-t) \right]_{x}^{\alpha} - \int_{x}^{\alpha} -(t-1)\frac{-1}{1-t} dt = -(\alpha-1)\ln(1-\alpha) + (x-1)\ln(1-x) + (\alpha-x).$$

Ainsi:
$$\int_{x}^{\alpha} f(t) dt \ge \int_{x}^{\alpha} [-\ln(1-t)] dt = (1-\alpha)\ln(1-\alpha) + (x-1)\ln(1-x) + (\alpha-x)$$

En faisant tendre α vers 1 il vient : $\int_{x}^{1} f(t) dt \ge (x-1) \ln(1-x) + 1 - x$.

En divisant par 1-x, qui est strictement positif, on obtient : $\frac{1}{1-x}\int_x^1 f(t) dt \ge -\ln(1-x) + 1$.

Ainsi: $\frac{g(x) - 1}{x - 1} = \frac{1}{1 - x} \int_{x}^{1} f(t) dt \ge -\ln(1 - x) + 1$ pour tout élément x de]0, 1[.

Or
$$\lim_{x\to 1}(-\ln(1-x)+1)=+\infty$$
 donc $\lim_{x\to 1}\frac{g(x)-g(1)}{x-1}=+\infty$. Par conséquent g n'est pas dérivable en 1.

<u>Exercice</u> Retouver ce résultat en utilisant $\lim_{x\to 1} f(x) = +\infty$ et le théorème des accroissements finis.

$$\begin{array}{c|cccc}
x & 0 & 1 \\
\hline
g'(x) & + \\
g & & & g(1)
\end{array}$$

e. $\forall x \in [0,1[, g''(x) = (g')'(x) = f'(x) \ge 0. g''$ est positive sur [0,1[donc g est convexe sur [0,1[... et même sur [0,1].

Courbe...

 ${\bf Courbe...}$

3. a. Ceci est un résultat de cours. Si t appartient à $[0,1[,\,|t|<1\ {\rm et}:$ la série de terme général t^n converge

De plus
$$\left[\sum_{n=0}^{+\infty} t^n = \frac{1}{1-t}\right].$$

b. $\forall n \in \mathbb{N}, \ \forall t \in [0, 1[, \ R_n(t) = \sum_{k=n+1}^{+\infty} t^k = \sum_{k=0}^{+\infty} t^k - \sum_{k=0}^n t^k = \frac{1}{1-t} - \frac{1-t^{n+1}}{1-t} = \frac{t^{n+1}}{1-t}.$

$$\forall n \in \mathbb{N}, \ \forall t \in [0,1[, \ R_n(t) = \frac{t^{n+1}}{1-t}]$$

Pour tout n appartenant à \mathbb{N} , R_n est continue sur [0,1[comme quotient de fonctions continues sur [0,1[.

c. Soit x un élément de [0,1] et n un élément de \mathbb{N} .

$$\int_0^x \frac{1}{1-t} dt = \int_0^x \left(\sum_{k=0}^{+\infty} t^k\right) dt = \int_0^x \left(\sum_{k=0}^n t^k + R_n(t)\right) dt = \sum_{k=0}^n \int_0^x t^k dt + \int_0^x R_n(t) dt.$$

$$\int_0^x \frac{1}{1-t} dt = \sum_{k=0}^n \left[\frac{t^{k+1}}{k+1}\right]_0^x + \int_0^x R_n(t) dt = \sum_{k=0}^n \frac{x^{k+1}}{k+1} + \int_0^x R_n(t) dt.$$

$$\forall n \in \mathbb{N}, \ \forall x \in [0, 1[, \int_0^x \frac{1}{1-t} dt = \sum_{k=0}^n \frac{x^{k+1}}{k+1} + \int_0^x R_n(t) dt$$

d. Reprenons n dans \mathbb{N} et x dans [0,1[.

$$\forall t \in [0,x], \ 0 \leqslant \frac{1}{1-t} \leqslant \frac{1}{1-x} \text{ et } t^{n+1} \geqslant 0. \ \text{Donc } \forall t \in [0,x], \ 0 \leqslant \frac{t^{n+1}}{1-t} \leqslant \frac{1}{1-x} \ t^{n+1}.$$

En intégrant entre 0 et x $(0 \le x)$ il vient :

$$0 \leqslant \int_0^x R_n(t) \, \mathrm{d}t \leqslant \frac{1}{1-x} \left[\frac{t^{n+2}}{n+2} \right]_0^x = \frac{x}{(1-x)(n+2)} \times x^{n+1} \leqslant \frac{x}{(1-x)(n+2)} \times 1.$$

Donc
$$\forall n \in \mathbb{N}, \ \forall x \in [0,1[, \ 0 \leqslant \int_0^x R_n(t) \, \mathrm{d}t \leqslant \frac{x}{(n+2)(1-x)}$$

e. Soit
$$x$$
 un élément de $[0,1[. c)$ donne : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \frac{x^{k+1}}{k+1} = \int_{0}^{x} \frac{1}{1-t} dt - \int_{0}^{x} R_{n}(t) dt$.

Comme
$$\lim_{n\to+\infty} \frac{x}{(n+2)(1-x)} = 0$$
, l'encadrement de d) donne alors $\lim_{n\to+\infty} \int_0^x R_n(t) dt = 0$.

Ainsi
$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^{k+1}}{k+1} = \int_{0}^{x} \frac{1}{1-t} dt = \left[-\ln(1-t) \right]_{0}^{x} = -\ln(1-x).$$

Donc, pour tout élément
$$x$$
 de $[0,1[$, la série de terme général $\frac{x^{k+1}}{k+1}$ converge et $\sum_{k=0}^{+\infty} \frac{x^{k+1}}{k+1} = -\ln(1-x)$

En divisant par
$$x$$
 élément de $]0,1[$ on obtient $:\sum_{k=0}^{+\infty}\frac{x^k}{k+1}=-\frac{\ln(1-x)}{x}=f(x).$

Ainsi: $\forall x \in]0,1[, f(x) = \sum_{k=0}^{+\infty} \frac{x^k}{k+1}$. Ceci vaut encore pour x=0 car f(0)=1.

Donc
$$\forall x \in [0, 1[, f(x)] = \sum_{k=0}^{+\infty} \frac{x^k}{k+1}$$
.

4. a. Soit x un élément de [0,1]. $\forall n \in \mathbb{N}^*, \ 0 \leqslant \frac{x^n}{n^2} \leqslant \frac{1}{n^2}$. De plus la série de terme général $\frac{1}{n^2}$ est convergente. Les règles de comparaison des séries à termes positifs montrent alors que la série de terme général $\frac{x^n}{n^2}$ converge.

Ainsi pour tout élément x de [0,1] la série de terme général $\frac{x^n}{n^2}$ converge

b. Soit
$$n$$
 un élément de \mathbb{N} . $\forall t \in [0,1[, \rho_n(t) = \sum_{k=n+1}^{+\infty} \frac{t^k}{k+1} = \sum_{k=0}^{+\infty} \frac{t^k}{k+1} - \sum_{k=0}^n \frac{t^k}{k+1} = f(t) - \sum_{k=0}^n \frac{t^k}{k+1}$

f est continue sur [0,1[et $t \to \sum_{k=0}^{n} \frac{t^k}{k+1}$ également. Par différence : ρ_n est continue sur [0,1[] et ceci pour tout n élément de \mathbb{N} .

c. Soit x un élément de [0,1[et n un élément de \mathbb{N} .

$$g(x) = \int_0^x f(t) dt = \int_0^x \sum_{k=0}^{+\infty} \frac{t^k}{k+1} dt = \int_0^x \left(\sum_{k=0}^n \frac{t^k}{k+1} + \rho_n(t) \right) dt = \sum_{k=0}^n \int_0^x \frac{t^k}{k+1} dt + \int_0^x \rho_n(t) dt.$$

$$g(x) = \sum_{k=0}^{n} \left[\frac{t^{k+1}}{(k+1)^2} \right]_0^x + \int_0^x \rho_n(t) dt = \sum_{k=0}^{n} \frac{x^{k+1}}{(k+1)^2} + \int_0^x \rho_n(t) dt.$$

$$\forall x \in [0, 1[, \forall n \in \mathbb{N}, g(x) = \sum_{k=0}^{n} \frac{x^{k+1}}{(k+1)^2} + \int_{0}^{x} \rho_n(t) dt$$

d. Soit n un élément de \mathbb{N} et soit t un élément de [0,1[.

Observons que : $\forall k \in [n+1, +\infty[, \frac{1}{k+1} \le \frac{1}{n+2}]$. Ainsi avons-nous :

$$0 \leqslant \rho_n(t) = \sum_{k=n+1}^{+\infty} \frac{t^k}{k+1} \leqslant \frac{1}{n+2} \sum_{k=n+1}^{+\infty} t^k = \frac{1}{n+2} R_n(t) = \frac{1}{n+2} \frac{t^{n+1}}{1-t} \leqslant \frac{1}{(n+2)(1-t)}$$

$$\forall n \in \mathbb{N}, \ \forall t \in [0,1[, \ 0 \leqslant \rho_n(t) \leqslant \frac{1}{(n+2)(1-t)}]$$

<u>Remarque</u> On peut encore retrouver ce résultat en utilisant 3 d).

e. Soit n un élément de \mathbb{N} et x un élément de $[0,1[.\ \forall t\in[0,x],\ 0\leqslant\rho_n(t)\leqslant\frac{1}{(n+2)(1-t)}]$

En intégrant entre 0 et x $(0 \leqslant x)$ il vient : $0 \leqslant \int_0^x \rho_n(t) dt \leqslant \frac{1}{n+2} \int_0^x \frac{1}{1-t} dt = \frac{1}{n+2} \left[-\ln(1-t) \right]_0^x$

Donc:
$$\forall n \in \mathbb{N}, \ \forall x \in [0,1[,\ 0 \leqslant \int_0^x \rho_n(t) \, \mathrm{d}t \leqslant \frac{-\ln(1-x)}{n+2}$$

f. Soit x un élément de $[0,1[. \forall n \in \mathbb{N}, \ 0 \leqslant \int_0^x \rho_n(t) \, \mathrm{d}t = g(x) - \sum_{k=0}^n \frac{x^{k+1}}{(k+1)^2} \leqslant -\frac{\ln(1-x)}{n+2}$

$$\text{Comme } \lim_{n \to +\infty} \left(-\frac{\ln(1-x)}{n+2} \right) = 0 \text{ il vient par encadrement : } \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^{k+1}}{(k+1)^2} = g(x).$$

Ou:
$$\lim_{n \to +\infty} \sum_{k=1}^{n+1} \frac{x^k}{k^2} = g(x)$$
 c'est à dire: $\sum_{k=1}^{+\infty} \frac{x^k}{k^2} = g(x)$.

Ainsi
$$\forall x \in [0,1[, g(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}]$$

 $\underline{Exercice}$ Montrer que ceci vaut encore pour x=1

(on pourra en utilisant la définition prouver que $\lim_{x\to 1}\sum_{n=1}^{+\infty}\frac{x^n}{n^2}=\sum_{n=1}^{+\infty}\frac{1}{n^2}$).