PREMIER PROBLÈME

- 1. a. Montrons par récurrence que, pour tout élément n de \mathbb{N} , f_n est une application polynômiale.
- Cela semble relativement clair pour n=0 puisque $\forall x \in I, \ f_0(x)=1.$
- Supposons que pour un élément n de \mathbb{N} , f_n soit une application polynômiale. Montrons qu'il en est de même pour f_{n+1} .

 f_n est une application polynômiale donc $h_n: t \to f_n(t) + f_n(t^2)$ aussi. Ainsi $x \to \int_0^x \left(f_n(t) + f_n(t^2) \right) dt$ est également une application polynômiale car c'est la primitive de h_n sur l'intervalle I qui prend la valeur 0 en 0.

Alors $f_{n+1}: x \to 1 + \frac{1}{2} \int_0^x \left(f_n(t) + f_n(t^2) \right) dt$ est encore une application polynômiale et ainsi s'achève la récurrence.

Pour tout élément n de \mathbb{N} , f_n est une application polynômiale.

b.
$$\forall x \in I, \ f_1(x) = 1 + \frac{1}{2} \int_0^x \left(f_0(t) + f_0(t^2) \right) dt = 1 + \frac{1}{2} \int_0^x 2 dt = 1 + \frac{1}{2} (2x) = 1 + x.$$

$$\forall x \in I, \ f_1(x) = 1 + x.$$

$$\forall x \in I, \ f_2(x) = 1 + \frac{1}{2} \int_0^x \left(f_1(t) + f_1(t^2) \right) dt = 1 + \frac{1}{2} \int_0^x \left(1 + t + 1 + t^2 \right) dt = 1 + \frac{1}{2} \left[2t + \frac{t^2}{2} + \frac{t^3}{3} \right]_0^x.$$

$$\forall x \in I, \ f_2(x) = 1 + x + \frac{x^2}{4} + \frac{x^3}{6}.$$

$$\forall x \in I, \ f_2(x) = 1 + x + \frac{x^2}{4} + \frac{x^3}{6}$$

$$\forall x \in I, \ f_3(x) = 1 + \frac{1}{2} \int_0^x \left(f_2(t) + f_2(t^2) \right) dt = 1 + \frac{1}{2} \int_0^x \left(1 + t + \frac{t^2}{4} + \frac{t^3}{6} + 1 + t^2 + \frac{t^4}{4} + \frac{t^6}{6} \right) dt.$$

$$\forall x \in I, \ f_3(x) = 1 + \frac{1}{2} \left[2t + \frac{t^2}{2} + \frac{5t^3}{12} + \frac{t^4}{24} + \frac{t^5}{20} + \frac{t^7}{42} \right]_0^x.$$

$$\forall x \in I, \ f_3(x) = 1 + x + \frac{x^2}{4} + \frac{5x^3}{24} + \frac{x^4}{48} + \frac{x^5}{40} + \frac{x^7}{84}.$$

2. Notons que I est un <u>segment</u> et qu'ainsi toute application continue de I dans \mathbb{R} , possède un maximum (et un minimum).

Ainsi, pour tout élément n de \mathbb{N}^* , on a encore : $D_n = \max_{x \in I} |f_n(x) - f_{n-1}(x)|$ ($|f_n - f_{n-1}|$ est continue sur I...).

a.
$$D_1 = \underset{x \in I}{\text{Max}} |f_1(x) - f_0(x)| = \underset{x \in I}{\text{Max}} |1 + x - 1| = \underset{x \in I}{\text{Max}} |x| = \frac{1}{2}$$

$$D_1 = \frac{1}{2}.$$

$$D_2 = \max_{x \in I} |f_2(x) - f_1(x)| = \max_{x \in I} \left| 1 + x + \frac{x^2}{4} + \frac{x^3}{6} - 1 - x \right| = \max_{x \in I} \left| \frac{x^2}{4} + \frac{x^3}{6} \right| = \max_{x \in I} \left| \frac{x^2}{6} \left(x + \frac{3}{2} \right) \right|.$$

Si
$$x$$
 est dans I , $\frac{x^2}{6}\left(x+\frac{3}{2}\right)$ est un réel positif; donc $D_2=\max_{x\in I}\left[\frac{x^2}{6}\left(x+\frac{3}{2}\right)\right]=\max_{x\in I}\left(\frac{x^2}{4}+\frac{x^3}{6}\right)$.

Dès lors étudions rapidement la fonction u définie par : $\forall x \in I, u(x) = \frac{x^2}{4} + \frac{x^3}{6}$.

u est dérivable sur I et $\forall x \in I, u'(x) = \frac{x}{2} + \frac{x^2}{2} = \frac{x}{2}(1+x)$. Donc si x est dans I, u'(x) est du signe de x.

Ainsi u est décroissante sur $\left[-\frac{1}{2},0\right]$ et croissante sur $\left[0,\frac{1}{2}\right]$. Remarquons que $u\left(-\frac{1}{2}\right)=\frac{1}{24}$ et $u\left(\frac{1}{2}\right)=\frac{1}{12}$.

Ce qui précède donne alors : $\max_{x \in I} u(x) = \frac{1}{12}$ et donc

$$D_2 = \frac{1}{12} \cdot$$

b. Afin de ne pas refaire quatre fois la même démonstration (au niveau de Q2 b, Q4 a, Q4 c et Q7) je propose d'établir le lemme suivant.

Soit g une application continue du segment $I=[-\frac{1}{2},\frac{1}{2}]$ dans \mathbb{R} . Posons $M=\max_{x\in I}|g(x)|$.

$$\forall (x,y) \in I^2, \ \left| \int_y^x \left(g(t) + g(t^2) \right) dt \right| \leqslant 2M|x - y| \quad (1).$$

$$\forall x \in I, \ \left| \int_0^x \left(g(t) + g(t^2) \right) dt \right| \leqslant M \quad (2).$$

Démonstration du lemme.

$$\forall t \in I, \ t^2 \in I. \ \text{Donc} : \forall t \in I, \ |g(t) + g(t^2)| \le |g(t)| + |g(t^2)| \le 2M.$$

Soit x et y deux éléments de I.

Si
$$y \leqslant x : \left| \int_y^x \left(g(t) + g(t^2) \right) dt \right| \leqslant \int_y^x \left| g(t) + g(t^2) \right| dt \leqslant \int_y^x 2M dt \leqslant 2M(x - y) = 2M|x - y|.$$

Si
$$y > x : \left| \int_y^x \left(g(t) + g(t^2) \right) dt \right| = \left| - \int_x^y \left(g(t) + g(t^2) \right) dt \right| = \left| \int_x^y \left(g(t) + g(t^2) \right) dt \right|$$
 et nous sommes ramenés au cas précédent et (1) est alors prouvé.

Soit x un élément de I. (1) donne sans difficulté : $\left| \int_0^x \left(g(t) + g(t^2) \right) \mathrm{d}t \right| \leqslant 2M|x - 0| = 2M|x|.$

Comme
$$x$$
 est dans $I:2|x|\leqslant 1$. Par conséquent : $\left|\int_0^x \left(g(t)+g(t^2)\right) \mathrm{d}t\right|\leqslant M$.

Ceci achève la démonstration du lemme.

Soit n un élément de \mathbb{N}^* et soit x un élément de I.

$$|f_{n+1}(x) - f_n(x)| = \left| 1 + \frac{1}{2} \int_0^x \left(f_n(t) + f_n(t^2) \right) dt - 1 - \frac{1}{2} \int_0^x \left(f_{n-1}(t) + f_{n-1}(t^2) \right) dt \right|.$$

$$|f_{n+1}(x) - f_n(x)| = \frac{1}{2} \left| \int_0^x \left[\left(f_n - f_{n-1} \right)(t) + \left(f_n - f_{n-1} \right)(t^2) \right] dt \right|.$$

Rappelons que $f_n - f_{n-1}$ est continue sur I et que $\underset{x \in I}{\text{Max}} |f_n(x) - f_{n-1}(x)| = D_n$.

En appliquant le point 2 du lemme à $|f_n - f_{n-1}|$ il vient : $|f_{n+1}(x) - f_n(x)| \le \frac{1}{2} D_n$.

$$\forall n \in \mathbb{N}^*, \ \forall x \in I, \ |f_{n+1}(x) - f_n(x)| \leqslant \frac{1}{2} \ D_n.$$

c. Soit n un élément de \mathbb{N}^* . Nous venons de voir que : $\forall x \in I, |f_{n+1}(x) - f_n(x)| \leq \frac{1}{2} D_n$.

Par conséquent $D_{n+1} = \underset{x \in I}{\text{Max}} |f_{n+1} - f_n(x)| \leqslant \frac{1}{2} D_n$.

Résumons : $D_1 = \frac{1}{2}$ et $\forall n \in \mathbb{N}^*, \ D_{n+1} \leqslant \frac{1}{2} \ D_n$. Une récurrence des plus banales donne alors :

$$\forall n \in N^*, \ D_n \leqslant \frac{1}{2^n}.$$

d.
$$\forall n \in N^*, \ 0 \leqslant D_n \leqslant \frac{1}{2^n} = \left(\frac{1}{2}\right)^n.$$

La convergence de la série de terme général $\left(\frac{1}{2}\right)^n \left(\left|\frac{1}{2}\right| < 1\,!\right)$ et les règles de comparaison des séries à termes positifs montrent que :

la série de terme général D_n converge.

Soit x un élément de I. $\forall n \in \mathbb{N}^*, \ 0 \leqslant |f_n(x) - f_{n-1}(x)| \leqslant D_n$.

La convergence de la série de terme général D_n et les règles de comparaison des séries à termes positifs montrent que la série de terme général $|f_n(x) - f_{n-1}(x)|$ converge.

Pour tout élément x de I, la série de terme général $f_n(x) - f_{n-1}(x)$ est absolument convergente donc convergente.

3. Soit x un élément de I.

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \left(f_k(x) - f_{k-1}(x) \right) = f_n(x) - f_0(x) = f_n(x) - 1.$$

Donc
$$\forall n \in \mathbb{N}^*, \ f_n(x) = \sum_{k=1}^n (f_k(x) - f_{k-1}(x)) + 1.$$

Comme la série de terme général $f_n(x) - f_{n-1}(x)$ converge, la suite de terme général $\sum_{k=1}^{n} \left(f_k(x) - f_{k-1}(x) \right)$ converge également. Il est alors clair que :

la suite
$$(f_n(x))_{n\in\mathbb{N}}$$
 converge.

- **4.** Ici encore si n est dans \mathbb{N} , $M_n = \underset{x \in I}{\operatorname{Max}} |f_n(x)|$ (car $|f_n|$ est continue sur le segment I).
- **a.** Soit n un élément de \mathbb{N}^* .

$$\forall x \in I, |f_n(x)| = \left| 1 + \frac{1}{2} \int_0^x \left(f_{n-1}(t) + f_{n-1}(t^2) \right) dt \right| \leqslant 1 + \frac{1}{2} \left| \int_0^x \left(f_{n-1}(t) + f_{n-1}(t^2) \right) dt \right|.$$

En appliquant le point 2 du lemme à f_{n-1} il vient alors : $\forall x \in I, |f_n(x)| \leq 1 + \frac{1}{2} M_{n-1}$.

Alors
$$M_n = \max_{x \in I} |f_n(x)| \le 1 + \frac{1}{2} M_{n-1}$$
.

$$\forall n \in \mathbb{N}^*, \ M_n \leqslant 1 + \frac{1}{2} \ M_{n-1}.$$

- **b.** Montrons par récurrence que pour tout élément n de $\mathbb{N}, M_n \leqslant 2$
- \bullet La propriété est vraie pour n=0 car M_0 vaut 1 puisque $f_0=1.$
- Supposons la propriété vraie pour un élément n de N et montrons la pour n+1. $M_{n+1} \leq 1 + \frac{1}{2} M_n$. Comme, par hypothèse $M_n \leq 2 : M_{n+1} \leq 1 + \frac{1}{2} \times 2 = 2$ et ainsi s'achève la récurrence.

$$\forall n \in \mathbb{N}, \ M_n \leqslant 2$$

c. Soient n un élément de \mathbb{N}^* , x et y deux éléments de I.

$$|f_n(x) - f_n(y)| = \left| 1 + \frac{1}{2} \int_0^x \left(f_{n-1}(t) + f_{n-1}(t^2) \right) dt - 1 - \frac{1}{2} \int_0^y \left(f_{n-1}(t) + f_{n-1}(t^2) \right) dt \right|.$$

$$|f_n(x) - f_n(y)| = \frac{1}{2} \left| \int_y^x \left(f_{n-1}(t) + f_{n-1}(t^2) \right) dt \right|.$$

En appliquant le point 1 du lemme à f_{n-1} il vient : $|f_n(x) - f_n(y)| \le \frac{1}{2} 2M_{n-1}|x-y| = M_{n-1}|x-y|$.

Or
$$M_{n-1} \le 2$$
 donc $|f_n(x) - f_n(y)| \le 2|x - y|$.

Notons que cette dernière inégalité vaut encore pour n=0 car $f_0=1$. Ainsi :

$$\forall n \in \mathbb{N}, \ \forall (x,y) \in I^2, \ |f_n(x) - f_n(y)| \leq 2|x - y|.$$

5. a. $\forall n \in \mathbb{N}, \ \forall (x,y) \in I^2, \ |f_n(x) - f_n(y)| \leq 2|x-y|$. En faisant tendre n vers l'infini on obtient sans difficulté:

$$\forall (x,y) \in I^2, |f(x) - f(y)| \leq 2|x - y|.$$

b. Soit a un élément de I. $\forall x \in I$, $|f(x) - f(a)| \leq 2|x - a|$.

$$\lim_{x \to a} |x - a| = 0 \text{ donne alors } \lim_{x \to a} |f(x) - f(a)| = 0 \text{ et donc } \lim_{x \to a} f(x) = f(a).$$

f est continue en a et ceci pour tout élément a de I.

$$f$$
 est continue sur I .

6. a. Soient x un élément de I, n et p deux éléments de \mathbb{N}^* .

$$|f_{n+p}(x) - f_n(x)| = \left| \sum_{k=n+1}^{n+p} \left(f_k(x) - f_{k-1}(x) \right) \right| \leqslant \sum_{k=n+1}^{n+p} \left| f_k(x) - f_{k-1}(x) \right|.$$

$$|f_{n+p}(x) - f_n(x)| \leqslant \sum_{k=n+1}^{n+p} D_k \leqslant \sum_{k=n+1}^{n+p} \left(\frac{1}{2} \right)^k = \left(\frac{1}{2} \right)^{n+1} \frac{1 - \left(\frac{1}{2} \right)^p}{1 - \frac{1}{2}} = \frac{1}{2^n} \left(1 - \frac{1}{2^p} \right).$$

$$\forall x \in I, \ \forall n \in \mathbb{N}^*, \ \forall p \in \mathbb{N}^*, \ |f_{n+p}(x) - f_n(x)| \leqslant \frac{1}{2^n} \left(1 - \frac{1}{2^p} \right).$$

b. $\forall x \in I, \ \forall n \in \mathbb{N}^*, \ \forall p \in \mathbb{N}^*, \ |f_{n+p}(x) - f_n(x)| \leqslant \frac{1}{2^n}$. En faisant tendre p vers l'infini on obtient sans difficulté:

$$\forall x \in I, \ \forall n \in \mathbb{N}^*, \ |f(x) - f_n(x)| \leqslant \frac{1}{2^n}.$$

7. Soit x un élément de I.

Rappelons que:
$$\forall n \in \mathbb{N}, \ f_{n+1}(x) = 1 + \frac{1}{2} \int_0^x \left(f_n(t) + f_n(t^2) \right) dt$$
 et que $\lim_{n \to +\infty} f_{n+1}(x) = f(x)$.

Ainsi pour montrer que $f(x) = 1 + \frac{1}{2} \int_0^x \left(f(t) + f(t^2) \right) dt$ il suffit de prouver que :

$$\lim_{n \to +\infty} \left(\int_0^x \left(f_n(t) + f_n(t^2) \right) dt \right) = \int_0^x \left(f(t) + f(t^2) \right) dt.$$

Montrons pour cela que
$$\lim_{n\to+\infty} \left(\int_0^x \left[\left(f_n - f \right)(t) + \left(f_n - f \right)(t^2) \right) \right] dt \right) = 0.$$

Soit n un élément de N^* . $f_n - f$ est continue sur I.

Le point 2 du lemme appliqué à cette application donne alors :

$$\left| \int_0^x \left[\left(f_n - f \right)(t) + \left(f_n - f \right)(t^2) \right] dt \right| \leqslant \max_{x \in I} |f_n(x) - f(x)| = \max_{x \in I} |f(x) - f_n(x)|.$$

Or
$$\forall x \in I$$
, $|f(x) - f_n(x)| \leq \frac{1}{2^n} \cdot \text{Donc} \left| \int_0^x \left[\left(f_n - f \right)(t) + \left(f_n - f \right)(t^2) \right) \right] dt \right| \leq \frac{1}{2^n} \cdot$

$$\lim_{n \to +\infty} \frac{1}{2^n} = 0 \text{ fournit } \lim_{n \to +\infty} \left(\int_0^x \left[\left(f_n - f \right)(t) + \left(f_n - f \right)(t^2) \right) \right] dt \right) = 0 \text{ et achève de montrer que :}$$

$$\forall x \in I, \ f(x) = 1 + \frac{1}{2} \int_0^x (f(t) + f(t^2)) dt.$$

DEUXIÈME PROBLÈME

Partie I: Etude d'un exemple

1. E est de dimension 3 donc pour montrer que la famille de trois vecteurs $(e_1, f(e_1), f^2(e_1))$ est une base de E il suffit de montrer que c'est une famille libre.

$$f(e_1) = e_1 + e_2 - 2e_3$$
. $f^2(e_1) = f(f(e_1)) = -e_1 - 2e_2 + 2e_3$ car $\begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 2 \\ -2 & -2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$.

Soient α , β et γ trois éléments de \mathbb{C} tels que : $\alpha e_1 + \beta f(e_1) + \gamma f^2(e_1) = 0_E$. Montrons que $\alpha = \beta = \gamma = 0$.

$$\alpha e_1 + \beta (e_1 + e_2 - 2e_3) + \gamma (-e_1 - 2e_2 + 2e_3) = 0_E \text{ donc } (\alpha + \beta - \gamma)e_1 + (\beta - 2\gamma)e_2 + (-2\beta + 2\gamma)e_3 = 0_E.$$

La liberté de (e_1, e_2, e_3) donne alors $\alpha + \beta - \gamma = \beta - 2\gamma = -2\beta + 2\gamma = 0$.

Ainsi
$$\gamma = \beta = 2\gamma$$
 et $\alpha + \beta - \gamma = 0$. Nécessairement $\beta = \gamma = 0$ et $\alpha = -\beta + \gamma = 0$. Finalement $\alpha = \beta = \gamma = 0$.

Ceci achève de montrer que:

$$(e_1, f(e_1), f^2(e_1))$$
 est une base de E .

Cherchons la matrice de f dans cette base.

$$f(e_1) = 0.e_1 + 1.f(e_1) + 0.f^2(e_1)$$
 et $f^2(e_1) = 0.e_1 + 0.f(e_1) + 1.f^2(e_1)$.

$$f(f^2(e_1)) = f(-e_1 - 2e_2 + 2e_3) = -e_1 + e_2 \operatorname{car} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 2 \\ -2 & -2 & -3 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

$$f(f^{2}(e_{1})) = -e_{1} + e_{2} = -e_{1} - (e_{1} + e_{2} - 2e_{3}) - (-e_{1} - 2e_{2} + 2e_{3}) = -e_{1} - f(e_{1}) - f^{2}(e_{1}).$$

La matrice de
$$f$$
 dans la base $(e_1, f(e_1), f^2(e_1))$ est : $\begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$.

- **2.** Montrons que f est cyclique d'ordre 4.
 - $f^3(e_1) = -e_1 + e_2$; alors $f^4(e_1) = -f(e_1) + f(e_2) = -(e_1 + e_2 2e_3) + (2e_1 + e_2 2e_3) = e_1$.
 - $(e_1, f(e_1), f^2(e_1), f^3(e_1))$ est une famille génératrice de E comme sur-famille de la famille génératrice

 $(e_1, f(e_1), f^2(e_1))$ de E. En effet $E = \text{Vect}(e_1, f(e_1), f^2(e_1)) \subset \text{Vect}(e_1, f(e_1), f^2(e_1), f^3(e_1)) \subset E$ donne $\text{Vect}(e_1, f(e_1), f^2(e_1), f^3(e_1)) = E$ n'est-il pas?

•
$$(e_1, f(e_1), f^2(e_1), f^3(e_1)) = (e_1, e_1 + e_2 - 2e_3, -e_1 - 2e_2 + 2e_3, -e_1 + e_2);$$

la famille $(e_1, f(e_1), f^2(e_1), f^3(e_1))$ est donc constituée d'éléments deux à deux distincts.

Les trois points précédents permettent de dire que :

$$f$$
 est cyclique d'ordre 4 et $(e_1, f(e_1), f^2(e_1), f^3(e_1))$ est un cycle de f .

3. Pour montrer que $f^4 = \mathrm{id}_E$ il suffit de prouver que ces deux endomorphismes de E coïncident sur la base $\left(e_1, f(e_1), f^2(e_1)\right)$ de E. Pour cela il suffit de prouver que $f^4(e_1) = e_1, f^5(e_1) = f(e_1)$ et $f^6(e_1) = f^2(e_1)$.

 $f^4(e_1) = e_1$ résulte de Q1 et permet d'écrire que : $f(f^4(e_1)) = f(e_1)$ et $f^2(f^4(e_1)) = f^2(e_1)$; alors $f^5(e_1) = f(e_1)$ et $f^6(e_1) = f^2(e_1)$. Ainsi :

$$f^4 = \mathrm{id}_E.$$

4. Observons que $f^4 - id_E = 0_{\mathcal{L}(E)}$. Ainsi $X^4 - 1$ est un polynôme annulateur de f dont l'ensemble des racines est $\{1, -1, i, -i\}$.

Les seules valeurs propres possibles de f sont 1, -1, i et -i.

Notons \mathcal{B}' la base $\left(e_1, f(e_1), f^2(e_1)\right)$ de E et A' la matrice de f dans cette base. $A' = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$.

Soit x un élément de E de coordonnées (α, β, γ) dans \mathcal{B}'

$$f(x) = x \Leftrightarrow A' \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \Leftrightarrow \begin{cases} -\gamma = \alpha \\ \alpha - \gamma = \beta \\ \beta - \gamma = \gamma \end{cases} \Leftrightarrow \begin{cases} \gamma = -\alpha \\ \beta = 2\alpha \\ 2\alpha + \alpha = -\alpha \end{cases} \Leftrightarrow \alpha = \beta = \gamma = 0 \Leftrightarrow x = 0_E.$$

Donc 1 n'est pas valeur propre de f.

$$f(x) = -x \Leftrightarrow A' \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = - \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \Leftrightarrow \begin{cases} -\gamma = -\alpha \\ \alpha - \gamma = -\beta \\ \beta - \gamma = -\gamma \end{cases} \Leftrightarrow \begin{cases} \alpha = \gamma \\ \beta = 0 \end{cases}.$$

Alors -1 est valeur propre de f et le sous-espace propre associé est SEP $(f, -1) = \text{Vect}(e_1 + f^2(e_1))$.

Observons que Vect $(e_1 + f^2(e_1)) = \text{Vect}(e_1 - e_1 - 2e_2 + 2e_3) = \text{Vect}(-2e_2 + 2e_3) = \text{Vect}(e_2 - e_3)$.

$$f(x) = ix \Leftrightarrow A' \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = i \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \Leftrightarrow \begin{cases} -\gamma = i\alpha \\ \alpha - \gamma = i\beta \\ \beta - \gamma = i\gamma \end{cases} \Leftrightarrow \begin{cases} \gamma = -i\alpha \\ \beta = \frac{1}{i}(\alpha - \gamma) = -i(\alpha + i\alpha) = (1 - i)\alpha. \\ (1 - i)\alpha + i\alpha = i(-i\alpha) = \alpha \end{cases}$$

$$f(x) = ix \Leftrightarrow \begin{cases} \gamma = -i\alpha \\ \beta = (1-i)\alpha \Leftrightarrow \begin{cases} \gamma = -i\alpha \\ \beta = (1-i)\alpha \end{cases} \end{cases}$$

Alors i est valeur propre de f et le sous-espace propre associé est SEP $(f,i) = \text{Vect} (e_1 + (1-i)f(e_1) - if^2(e_1))$.

Or
$$e_1 + (1-i)f(e_1) - if^2(e_1) = e_1 + (1-i)(e_1 + e_2 - 2e_3) - i(-e_1 - 2e_2 + 2e_3)) = 2e_1 + (1+i)e_2 - 2e_3$$
.

Par conséquent SEP (f, i) = Vect $(2e_1 + (1+i)e_2 - 2e_3)$.

Remarquons alors que si X est un élément de $\mathcal{M}_{3,1}(\mathbb{C})$, $A'X = -iX \Leftrightarrow A'\overline{X} = i\overline{X}$ puisque A' est à coefficients réels.

Ainsi $f(x) = -ix \Leftrightarrow \begin{cases} \overline{\gamma} = -i\overline{\alpha} \\ \overline{\beta} = (1-i)\overline{\alpha} \end{cases} \Leftrightarrow \begin{cases} \gamma = i\alpha \\ \beta = (1+i)\alpha \end{cases}$. Alors -i est valeur propre de f et le sous-espace propre associé est SEP $(f, -i) = \text{Vect}\left(e_1 + (1+i)f(e_1) + if^2(e_1)\right) = \text{Vect}\left(2e_1 + (1-i)e_2 - 2e_3\right)$.

f admet trois valeurs propres distinctes et E est de dimension 3 donc :

$$f$$
 est diagonalisable.

Comme SEP (f, -1) = Vect $(e_2 - e_3)$, SEP (f, i) = Vect $(2e_1 + (1+i)e_2 - 2e_3)$ et SEP (f, -i) = Vect $(2e_1 + (1+i)e_3 - 2e_4)$ et SEP (f, -i) = Vect $(2e_1 + (1+i)e_3 - 2e_4)$ et SEP (f, -i) et SEP (f, -i) et SEP (f, -i) et SEP (f, -i) e

 $(e_2 - e_3, 2e_1 + (1+i)e_2 - 2e_3, 2e_1 + (1-i)e_2 - 2e_3)$ est une base de E constituée de vecteurs propres de f respectivement associés aux valeurs propres 1, i et -i.

Partie II Cas général

1. $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un cycle de f donc c'est une famille génératrice de E. Cette famille génératrice est de cardinal p et E est de dimension n, par conséquent :

$$p \geqslant n$$
.

2. Soit x un élément de E. $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est une famille génératrice de E donc il existe un élément $(\lambda_0, \lambda_1, \dots, \lambda_{p-1})$ de \mathbb{C}^p tel que : $x = \sum_{k=0}^{p-1} \lambda_k f^k(x_0)$.

$$f^p(x) = f^p\left(\sum_{k=0}^{p-1} \lambda_k \ f^k(x_0)\right) = \sum_{k=0}^{p-1} \lambda_k \ f^p\big(f^k(x_0)\big) = \sum_{k=0}^{p-1} \lambda_k \ f^{p+k}\big(x_0\big) = \sum_{k=0}^{p-1} \lambda_k \ f^k\big(f^p(x_0)\big).$$

Or
$$f^p(x_0) = x_0$$
. Ainsi $f^p(x) = \sum_{k=0}^{p-1} \lambda_k f^k(x_0) = x$.

Finalement $\forall x \in E, \ f^p(x) = x = \mathrm{id}_E(x) \ \mathrm{donc}$:

$$f^p = \mathrm{id}_E$$
.

 $f\circ f^{p-1}=f^p=\mathrm{id}_E.$ De même $f^{p-1}\circ f=f^p=\mathrm{id}_E.$ Ainsi :

$$f$$
 est bijective et $f^{-1} = f^{p-1}$.

3. a. Par définition de m, $(x_0, f(x_0), \ldots, f^{m-1}(x_0))$ est libre et $(x_0, f(x_0), \ldots, f^m(x_0))$ est liée.

Par conséquent il existe un élément <u>non nul</u> $(\lambda_0, \lambda_1, \dots, \lambda_m)$ de \mathbb{C}^{m+1} tel que : $\sum_{k=0}^m \lambda_k f^k(x_0) = 0_E$.

Supposons $\lambda_m = 0$. Alors $\sum_{k=0}^{m-1} \lambda_k f^k(x_0) = 0_E$. La liberté de la famille $(x_0, f(x_0), \dots, f^{m-1}(x_0))$ donne $\lambda_0 = \lambda_1 = \dots = \lambda_{m-1} = 0$.

Ainsi $\lambda_0 = \lambda_1 = \cdots = \lambda_m = 0$ ce qui induit une légère contradiction.

On peut donc affirmer que λ_m n'est pas nul et écrire: $f^m(x_0) = \sum_{k=0}^{m-1} \left(-\frac{\lambda_k}{\lambda_m}\right) f^k(x_0)$.

$$f^m(x_0)$$
 est combinaison linéaire de $(x_0, f(x_0), \dots, f^{m-1}(x_0))$.

- **b.** Montrons par récurrence que, pour tout élément k de $[m, +\infty[$, $f^k(x_0)$ est combinaison linéaire des m vecteurs $x_0, f(x_0), ..., f^{m-1}(x_0)$.
- Nous venons de montrer que la propriété est vraie pour k=m.
- Supposons la propriété vraie pour un élément k de $[m, +\infty]$ et montrons la pour k+1.

L'hypothèse de récurrence permet de dire que $f^k(x_0)$ appartient à Vect $(x_0, f(x_0), \dots, f^{m-1}(x_0))$.

Alors:
$$f^{k+1}(x_0) \in f\left(\text{Vect}\left(x_0, f(x_0), \dots, f^{m-1}(x_0)\right) = \text{Vect}\left(f(x_0), f^2(x_0), \dots, f^m(x_0)\right).$$

De toute évidence $f^i(x_0)$ appartient à Vect $(x_0, f(x_0), \dots, f^{m-1}(x_0))$ si i appartient à [1, m-1]. $f^m(x_0)$ appartient également à Vect $(x_0, f(x_0), \dots, f^{m-1}(x_0))$ d'après a.

Ainsi $\forall i \in [1, m], f^i(x_0) \in \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0)).$

Alors Vect $(f(x_0), f^2(x_0), \dots, f^m(x_0)) \subset \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0))$. Comme $f^{k+1}(x_0)$ appartient à Vect $(f(x_0), f^2(x_0), \dots, f^m(x_0)), f^{k+1}(x_0)$ appartient à Vect $(x_0, f(x_0), \dots, f^{m-1}(x_0))$.

 $f^{k+1}(x_0)$ est combinaison linéaire des m vecteurs $x_0, f(x_0), ..., f^{m-1}(x_0)$ et ainsi s'achève la récurrence.

Pour tout entier naturel k supérieur ou égal à m, le vecteur $f^k(x_0)$ est combinaison linéaire des m vecteurs $x_0, f(x_0), ..., f^{m-1}(x_0)$.

c. Nous venons de voir que pour tout élément k de $\llbracket m, +\infty \rrbracket$ le vecteur $f^k(x_0)$ est combinaison linéaire des m vecteurs $x_0, f(x_0), ..., f^{m-1}(x_0)$. Ceci vaut également pour k dans $\llbracket 0, m-1 \rrbracket$.

Ainsi tous les éléments de la famille génératrice $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ sont combinaisons linéaires de la famille $(x_0, f(x_0), \dots, f^{m-1}(x_0))$.

Alors
$$E = \text{Vect}(x_0, f(x_0), \dots, f^{p-1}(x_0)) \subset \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0)) \subset E$$
.

Ainsi Vect $(x_0, f(x_0), \dots, f^{m-1}(x_0)) = E$.

La famille $(x_0, f(x_0), \dots, f^{m-1}(x_0))$ est donc une famille génératrice de E. Rappelons que par définition de m elle est libre.

 $(x_0, f(x_0), \dots, f^{m-1}(x_0))$ est donc une base de E de cardinal m. Comme E est de dimension n:

$$m=n$$
 et $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E .

4. a. Soit k un élément de \mathbb{N} .

$$g(f^k(x_0)) = \sum_{\ell=0}^{n-1} a_{\ell} f^{\ell}(f^k(x_0)) = \sum_{\ell=0}^{n-1} a_{\ell} f^{\ell+k}(x_0) = \sum_{\ell=0}^{n-1} a_{\ell} f^k(f^{\ell}(x_0)) = f^k\left(\sum_{\ell=0}^{n-1} a_{\ell} f^{\ell}(x_0)\right).$$

Rappelons que, par hypothèse, $f^n(x_0) = \sum_{\ell=0}^{n-1} a_{\ell} f^{\ell}(x_0)$.

Ainsi $g(f^k(x_0)) = f^k(f^n(x_0)) = f^{k+n}(x_0) = f^{n+k}(x_0) = f^n(f^k(x_0)).$

$$\forall k \in \mathbb{N}, \ g(f^k(x_0)) = f^{n+k}(x_0) = f^n(f^k(x_0)).$$

Ceci permet en particulier de dire que les deux endomorphismes g et f^n coïncident sur les éléments de la base $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ de E. Alors $g = f^n$.

$$f^n = a_0 id_E + a_1 f + a_2 f^2 + \dots + a_{n-1} f^{n-1}.$$

b. $\forall i \in [0, n-2], f(f^i(x_0)) = 0.x_0 + 0.f(x_0) + \dots + 0.f^i(x_0) + 1.f^{i+1}(x_0) + 0.f^{i+2}(x_0) + \dots + 0.f^{n-1}(x_0).$ On a également: $f(f^{n-1}(x_0)) = f^n(x_0) = a_0 x_0 + a_1 f(x_0) + a_2 f^2(x_0) + \dots + a_{n-1} f^{n-1}(x_0).$

La matrice de
$$f$$
 dans la base $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est donc :
$$\begin{pmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}.$$

c. Soit λ un élément de \mathbb{C} . Posons pour tout élément k de [0, n], $e_k = f^k(x_0)$.

 $(e_0, e_1, \dots, e_{n-1}) = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E. De plus $\forall k \in [0, n-1], f(e_k) = e_{k+1}$.

Alors
$$\forall k \in [0, n-1]$$
, $(f - \lambda \operatorname{id}_E)(e_k) = (f - \lambda \operatorname{id}_E)((f^k(x_0))) = f^{k+1}(x_0) - \lambda f^k(x_0) = e_{k+1} - \lambda e_k$.

$$(e_1 - \lambda e_0, e_2 - \lambda e_1, \dots, e_{n-1} - \lambda e_{n-2}, e_n - \lambda e_{n-1})$$
 est donc une famille d'éléments de $\operatorname{Im}(f - \lambda \operatorname{id}_E)$.

 $(e_1 - \lambda e_0, e_2 - \lambda e_1, \dots, e_{n-1} - \lambda e_{n-2})$ également. Pour prouver que la dimension de $\text{Im}(f - \lambda \text{ id}_E)$ est supérieure ou égale à n-1, montrons que cette dernière famille est libre.

Soit $(\lambda_1, \lambda_2, \dots, \lambda_{n-1})$ un élément de \mathbb{C}^{n-1} tel que : $\lambda_1 (e_1 - \lambda e_0) + \lambda_2 (e_2 - \lambda e_1) + \dots + \lambda_{n-1} (e_{n-1} - \lambda e_{n-2}) = 0_E$.

$$-\lambda_1 \lambda e_0 + (\lambda_1 - \lambda_2 \lambda) e_1 + (\lambda_2 - \lambda_3 \lambda) e_2 + \dots + (\lambda_{n-2} - \lambda_{n-1} \lambda) e_{n-2} + \lambda_{n-1} e_{n-1} = 0_E.$$

La famille $(e_0, e_1, \ldots, e_{n-1})$ est libre il vient donc :

$$-\lambda_1\lambda = \lambda_1 - \lambda_2\lambda = \lambda_2 - \lambda_3\lambda = \dots = \lambda_{n-2} - \lambda_{n-1}\lambda = \lambda_{n-1} = 0.$$

Ceci donne sans difficulté $\lambda_1 = \lambda_2 = \cdots = \lambda_{n-1} = 0$.

Ainsi $(e_1 - \lambda e_0, e_2 - \lambda e_1, \dots, e_{n-1} - \lambda e_{n-2})$ est une famille libre de $\operatorname{Im}(f - \lambda \operatorname{id}_E)$, de cardinal n - 1.

Par conséquent dim $\operatorname{Im}(f - \lambda \operatorname{id}_E) \ge n - 1$.

$$\forall \lambda \in \mathbb{C}, \ \operatorname{rg}(f - \lambda \operatorname{id}_E) \geqslant n - 1.$$

Soit λ une valeur propre de f et SEP (f, λ) le sous-espace propre associé.

 $\dim SEP(f,\lambda) = \dim Ker(f-\lambda id_E)$. En appliquant le théorème du rang on obtient :

$$\dim \operatorname{SEP}(f,\lambda) = \dim E - \operatorname{rg}(f - \lambda \operatorname{id}_E) = n - \operatorname{rg}(f - \lambda \operatorname{id}_E).$$

$$\operatorname{rg}(f-\lambda \operatorname{id}_E) \geqslant n-1$$
 donne alors $\dim \operatorname{SEP}(f,\lambda) \leqslant n-(n-1)=1$.

Ainsi SEP (f, λ) est de dimension au plus 1.

Or par définition SEP (f, λ) est de dimension au moins 1. Alors dim SEP $(f, \lambda) = 1$.

Les sous-espaces propres de f sont de dimension 1.

5. a. f est cyclique d'ordre n donc $f^n = \mathrm{id}_E$ (d'après Q2). $X^n - 1$ est alors un polynôme annulateur de f. Toute valeur propre de f est alors une racine de ce polynôme. Ainsi:

Si un nombre complexe λ est valeur propre de f, alors $\lambda^n=1.$

b. $f^n(x_0) = x_0$, $f^n(x_0) = a_0 x_0 + a_1 f(x_0) + a_2 f^2(x_0) + \dots + a_{n-1} f^{n-1}(x_0)$ et $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E. Alors $a_0 = 1$ et $a_1 = a_2 = \dots = a_{n-1} = 0$.

La matrice de
$$f$$
 dans la base $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est donc :
$$\begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

c. Soit λ un élément de $\mathbb C$ tel que $\lambda^n=1$.

Soit x un élément de E de coordonnées $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$ dans la base $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$.

$$f(x) = \lambda x \Leftrightarrow \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \vdots \\ \alpha_{n-1} \end{pmatrix} = \lambda \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \vdots \\ \alpha_{n-1} \end{pmatrix}.$$

$$f(x) = \lambda x \Leftrightarrow \alpha_{n-1} = \lambda \alpha_0 \text{ et } \forall k \in [0, n-2], \ \alpha_k = \lambda \alpha_{k+1}.$$

$$f(x) = \lambda x \Leftrightarrow \alpha_{n-1} = \lambda \alpha_0 \text{ et } \forall k \in [0, n-2], \ \alpha_{k+1} = \frac{1}{\lambda} \alpha_k.$$

$$f(x) = \lambda x \Leftrightarrow \alpha_{n-1} = \lambda \alpha_0 \text{ et } \forall k \in [0, n-1], \ \alpha_k = \frac{1}{\lambda^k} \alpha_0.$$

$$f(x) = \lambda \, x \Leftrightarrow \forall k \in \llbracket 0, n-1 \rrbracket, \ \alpha_k = \frac{1}{\lambda^k} \, \alpha_0 \text{ et } \alpha_0 = \frac{1}{\lambda} \, \alpha_{n-1} = \frac{1}{\lambda} \, \frac{1}{\lambda^{n-1}} \, \alpha_0 = \frac{1}{\lambda^n} \, \alpha_0 = \alpha_0 \ !$$

$$f(x) = \lambda x \Leftrightarrow \forall k \in [0, n-1], \ \alpha_k = \frac{1}{\lambda^k} \alpha_0.$$

Alors λ est valeur propre de f et le sous-espace propre associé est la droite vectorielle engendrée par

$$x_0 + \frac{1}{\lambda} f(x_0) + \frac{1}{\lambda^2} f^2(x_0) + \dots + \frac{1}{\lambda^{n-1}} f^{n-1}(x_0).$$

Posons
$$\forall k \in [0, n-1], \ \lambda_k = e^{i\frac{2k\pi}{n}} \text{ et } t_k = x_0 + \frac{1}{\lambda_k} f(x_0) + \frac{1}{\lambda_k^2} f^2(x_0) + \dots + \frac{1}{\lambda_k^{n-1}} f^{n-1}(x_0).$$

 $\lambda_0, \, \lambda_1, \dots, \, \lambda_{n-1}$ sont les n solutions de l'équation $\lambda \in \mathbb{C}$ et $\lambda^n = 1$.

 $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ sont (les) n valeurs propres distinctes de f et $(t_0, t_1, \ldots, t_{n-1})$ est une famille d'éléments de E constituée de vecteurs propres de f associés à des valeurs propres distinctes.

 $(t_0, t_1, \ldots, t_{n-1})$ est alors une famille libre de cardinal n de l'espace vectoriel E dont la dimension est n.

 (t_0,t_1,\ldots,t_{n-1}) est donc une base de E constituée de vecteurs propres de f. Ainsi

f est diagonalisable.