Jean-François COSSUTTA. Lycée Marcelin Berthelot Saint Maur 94.

LYON 2003

PREMIER PROBLÈME

PARTIE I : Résultats généraux sur φ et J_n

1. Les fonctions $t \to \frac{1}{t}$ et sin sont continues sur $]0, +\infty[$. Par produit φ est continue sur $]0, +\infty[$. $\frac{\sin t}{t} \underset{0+}{\sim} \frac{t}{t} = 1 \text{ donc } \lim_{t \to 0^+} \frac{\sin t}{t} = 1. \text{ Alors } \lim_{t \to 0^+} \varphi(t) = 1 = \varphi(0) \text{ et } \varphi \text{ est continue (à droite) en } 0.$

$$\varphi$$
 est continue sur $[0, +\infty[$.

Alors pour tout élément n de \mathbb{N}^* φ^n est continue sur $[0, +\infty[$ donc sur [0, 1], ce qui suffit pour dire que :

$$J_n = \int_0^1 (\varphi(t))^n dt$$
 existe pour tout élément n de \mathbb{N}^* .

2. a. $\forall t \in]0,1], \sin t > 0 \text{ donc } \forall t \in]0,1], \ \varphi(t) = \frac{\sin t}{t} > 0. \text{ De plus } \varphi(0) > 0. \text{ Ainsi}:$

 φ est strictement positive sur [0,1].

 $\varphi \text{ est d\'erivable sur }]0,+\infty[\text{ et } \forall t\in]0,+\infty[,\ \varphi'(t)=\frac{1}{t^2}\left(t\,\cos t-\sin t\right). \text{ Posons } \forall t\in [0,1],\ \psi(t)=t\,\cos t-\sin t.$ $\psi \text{ est d\'erivable sur } [0,1] \text{ et } \forall t\in [0,1],\ \psi'(t)=\cos t-t\,\sin t-\cos t=-t\,\sin t.$

Alors ψ est continue sur [0,1] et $\forall t \in]0,1]$, $\psi'(t) < 0$ donc ψ est strictement décroissante sur [0,1].

Comme $\psi(0)=0, \ \forall t\in]0,1], \ \psi(t)<0.$ Par conséquent $\forall t\in]0,1], \ \varphi'(t)=\frac{1}{t^2}\,\psi(t)<0.$ φ est continue sur [0,1] et $\forall t\in]0,1], \ \varphi'(t)<0.$ Ainsi:

φ est strictement décroissante sur [0,1].

- **b.** Soit t un élément de]0,1]. Ce qui précède donne $0<\varphi(t)<\varphi(0)=1$. Donc $|\varphi(t)|=\varphi(t)<1$.
 - Soit t un élément de $]1, +\infty]$. $|\sin t| \le 1$ donc $|\varphi(t)| = \frac{|\sin t|}{t} \le \frac{1}{t} < 1$. Finalement :

$$\forall t \in]0, +\infty[, |\varphi(t)| < 1.$$

3. a. Posons: $\forall t \in [0, +\infty[, f(t) = \sin t - t + t^2]$. f est deux fois dérivable sur $[0, +\infty[$.

$$\forall t \in [0, +\infty[, f'(t) = \cos t - 1 + 2t \text{ et } f''(t) = -\sin t + 2.$$

f'' est positive sur $[0, +\infty[$ donc f' est croissante sur $[0, +\infty[$. Comme f'(0) = 0, f' est positive sur $[0, +\infty[$. f est alors croissante sur $[0, +\infty[$ et comme f(0) = 0, f est positive sur $[0, +\infty[$.

Ainsi: $\forall t \in [0, +\infty[, \sin t - t + t^2 \ge 0 \text{ ou } \forall t \in [0, +\infty[, \sin t \ge t(1-t).$

Alors $\forall t \in]0, +\infty[, \ \varphi(t) = \frac{\sin t}{t} \geqslant 1 - t$. Comme $\varphi(0) = 1 = 1 - 0$ on a:

$$\forall t \in [0, +\infty[, \varphi(t) \ge 1 - t].$$

b. Soit n un élément de \mathbb{N}^* . $\forall t \in [0,1], \ \varphi(t) \geqslant 1-t \geqslant 0 \ \text{donc} \ \forall t \in [0,1], \ \left(\varphi(t)\right)^n \geqslant \left(1-t\right)^n$.

En intégrant il vient : $J_n = \int_0^1 \left(\varphi(t)\right)^n \mathrm{d}t \geqslant \int_0^1 \left(1-t\right)^n \mathrm{d}t = \left[-\frac{(1-t)^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}$. Par conséquent :

$$\forall n \in \mathbb{N}^*, \ J_n \geqslant \frac{1}{n+1}.$$

PARTIE II: Etude de I₁

1. a. Soit x un élément de $[1, +\infty[$.

Une intégration par parties simple (avec $u(t) = \frac{1}{t}$ et $v'(t) = \sin t$) donne :

$$\int_1^x \frac{\sin t}{t} \, \mathrm{d}t = \left[\frac{1}{t} \left(-\cos t\right)\right]_1^x - \int_1^x \left(-\frac{1}{t^2}\right) \left(-\cos t\right) \mathrm{d}t \text{ ou } \int_1^x \frac{\sin t}{t} \, \mathrm{d}t = \frac{\left(-\cos x\right)}{x} - \frac{\left(-\cos 1\right)}{1} - \int_1^x \frac{\cos t}{t^2} \, \mathrm{d}t.$$

Finalement:

$$\forall x \in [1, +\infty[, \int_1^x \frac{\sin t}{t} dt = \cos 1 - \frac{\cos x}{x} - \int_1^x \frac{\cos t}{t^2} dt.$$

 $\mathbf{b.} \ \, \forall x \in [1, +\infty[, \ 0 \leqslant \left| \frac{\cos x}{x} \right| \leqslant \frac{1}{x} \cdot \text{ Comme } \lim_{x \to +\infty} \frac{1}{x} = 0, \text{ le th\'eor\`eme d'encadrement donne } \lim_{x \to +\infty} \frac{\cos x}{x} = 0.$

Ainsi $x \to \cos 1 - \frac{\cos x}{x}$ admet une limite finie en $+\infty$ ce qui permet de dire que les intégrales $\int_1^{+\infty} \frac{\sin t}{t} dt$ et $\int_1^{+\infty} \frac{\cos t}{t^2} dt$ sont de même nature. Montrons la convergence de cette dernière intégrale.

 $\forall x \in [1, +\infty[, 0 \le \left|\frac{\cos x}{x^2}\right| \le \frac{1}{x^2} \text{ et } \int_1^{+\infty} \frac{1}{t^2} dt \text{ converge. Les règles de comparaisons sur les intégrales généralisées de fonctions positives donnent alors la convergence de <math>\int_1^{+\infty} \left|\frac{\cos t}{t^2}\right| dt$.

Donc $\int_1^{+\infty} \frac{\cos t}{t^2} dt$ est absolument convergente donc convergente.

Ceci achève alors de montrer que $\int_1^{+\infty} \frac{\sin t}{t} dt$ converge.

Ainsi
$$K_1 = \int_1^{+\infty} \varphi(t) dt$$
 converge. Comme $J_1 = \int_0^1 \varphi(t) dt$ existe alors $I_1 = \int_0^{+\infty} \varphi(t) dt$ converge.

$$K_1 = \int_1^{+\infty} \varphi(t) dt$$
 et $I_1 = \int_0^{+\infty} \varphi(t) dt$ convergent.

2. a. $\forall t \in [0, +\infty[, 1 \ge |\sin t| \ge 0 \text{ donc } \forall t \in [0, +\infty[, |\sin t| \ge |\sin t|^2 = \sin^2 t = \frac{1}{2} (1 - \cos(2t)).$

$$\forall t \in [0, +\infty[, |\sin t| \geqslant \frac{1}{2} (1 - \cos(2t)).$$

b. Utilisons une méthode analogue à celle de 1.a. pour obtenir la convergence de $\int_1^{+\infty} \frac{\cos(2t)}{2t} dt$ ou de $\int_1^{+\infty} \frac{\cos(2t)}{t} dt$.

Soit x un élément de $[1, +\infty[$. Une intégration par parties simple (avec $u(t) = \frac{1}{t}$ et $v'(t) = \cos(2t)$) donne :

$$\int_{1}^{x} \frac{\cos(2t)}{t} dt = \left[\frac{1}{t} \left(\frac{\sin(2t)}{2} \right) \right]_{1}^{x} - \int_{1}^{x} \left(-\frac{1}{t^{2}} \right) \left(\frac{\sin(2t)}{2} \right) dt$$
Alors
$$\int_{1}^{x} \frac{\cos(2t)}{t} dt = \frac{\sin(2x)}{2x} - \frac{(\sin 2)}{2} + \int_{1}^{x} \frac{\sin(2t)}{2t^{2}} dt.$$

$$\forall x \in [1, +\infty[, \ 0 \leqslant \left| \frac{\sin(2x)}{2x} \right| \leqslant \frac{1}{2x} \text{ et } \lim_{x \to +\infty} \frac{1}{2x} = 0, \text{ par encadrement il vient } \lim_{x \to +\infty} \frac{\sin(2x)}{2x} = 0.$$

Ainsi $x \to \frac{\sin(2x)}{2x} - \frac{\sin 2}{2}$ adment une limite finie en $+\infty$ ce qui permet de dire que les intégrales $\int_1^{+\infty} \frac{\cos(2t)}{t} \, \mathrm{d}t \, \mathrm{et} \, \int_1^{+\infty} \frac{\sin(2t)}{2t^2} \, \mathrm{d}t \, \mathrm{sont} \, \mathrm{de} \, \, \mathrm{même} \, \mathrm{nature}.$

Montrons la convergence de cette dernière intégrale.

 $\forall x \in [1, +\infty[, \ 0 \leqslant \left| \frac{\sin(2\,x)}{2\,x^2} \right| \leqslant \frac{1}{2\,x^2} \text{ et } \int_1^{+\infty} \frac{1}{2\,t^2} \,\mathrm{d}t \text{ converge. Les règles de comparaisons sur les intégrales généralisées de fonctions positives donnent alors la convergence de } \int_1^{+\infty} \left| \frac{\sin(2\,t)}{2\,t^2} \right| \mathrm{d}t.$

Donc $\int_1^{+\infty} \frac{\sin(2t)}{2t^2} dt$ est absolument convergente donc convergente.

Ceci achève alors de montrer que $\int_1^{+\infty} \frac{\cos(2\,t)}{t}\,\mathrm{d}t$ converge. Ainsi :

$$\int_{1}^{+\infty} \frac{\cos(2t)}{2t} dt \text{ converge.}$$

$$\mathbf{c.} \ \forall t \in [1, +\infty[, \ |\varphi(t)| = \frac{|\sin t|}{t} \geqslant \frac{\sin^2 t}{t} = \frac{1}{2t} - \frac{\cos(2t)}{2t} \geqslant 0.$$

$$\int_{1}^{+\infty} \frac{1}{2\,t} \,\mathrm{d}t \text{ diverge et } \int_{1}^{+\infty} \frac{\cos(2\,t)}{2\,t} \,\mathrm{d}t \text{ converge donc } \int_{1}^{+\infty} \left(\frac{1}{2\,t} - \frac{\cos(2\,t)}{2\,t}\right) \mathrm{d}t \text{ diverge.}$$

Les règles de comparaisons sur les intégrales généralisées de fonctions positives donnent alors la divergence de $\int_1^{+\infty} \frac{|\sin t|}{t} dt$. $\int_0^{+\infty} \frac{|\sin t|}{t} dt$ diverge alors également.

L'intégrale I_1 n'est pas absolument convergente.

PARTIE III : Etude de I_n pour $n \ge 2$

1. a Soit n un élément de $[2, +\infty]$.

$$\varphi^n$$
 est continue sur $[1, +\infty[$ et $\forall t \in [1, +\infty[, \ 0 \leqslant |\varphi(t)^n| = \frac{|\sin t|^n}{t^n} \leqslant \frac{1}{t^n}]$

La convergence de $\int_1^{+\infty} \frac{1}{t^n} dt \ (n \geqslant 2)$ et les règles de comparaisons sur les intégrales généralisées de fonctions positives donnent alors la convergence de $\int_1^{+\infty} |\varphi(t)^n| dt$.

Ainsi $\int_{1}^{+\infty} (\varphi(t))^n dt$ est absolument convegente donc convergente.

Pour tout élément n de $[2, +\infty[$ l'intégrale K_n est convergente.

b. Soit n un élément de $[2, +\infty[$.

Comme
$$K_n$$
 est absolument convergente: $|K_n| = \left| \int_1^{+\infty} \varphi(t)^n dt \right| \leqslant \int_1^{+\infty} |\varphi(t)^n| dt$.

De plus
$$\forall t \in [1, +\infty[, 0 \le |\varphi(t)^n| \le \frac{1}{t^n} \text{ et } \int_1^{+\infty} \frac{1}{t^n} dt \text{ converge donc } : |K_n| \le \int_1^{+\infty} \frac{1}{t^n} dt.$$

$$\int_{1}^{+\infty} \frac{1}{t^{n}} \, \mathrm{d}t = \lim_{x \to +\infty} \int_{1}^{x} \frac{1}{t^{n}} \, \mathrm{d}t = \lim_{x \to +\infty} \left[-\frac{1}{(n-1)\,t^{n-1}} \right]_{1}^{x} = \lim_{x \to +\infty} \left(-\frac{1}{(n-1)\,x^{n-1}} + \frac{1}{n-1} \right) = \frac{1}{n-1} \cdot \frac{1}{(n-1)\,t^{n-1}} = \frac{1}{n-1} \cdot \frac{1}{(n-1)\,t^{n-1}} = \frac{1}{(n-1)\,t^{n-1}$$

Par conséquent $|K_n| \leq \frac{1}{n-1}$.

$$\forall n \in [2, +\infty[, |K_n| \leqslant \frac{1}{n-1}]$$

2.a. Soit n un élément de $[2, +\infty[$.

$$J_{n+1} - J_n = \int_0^1 \left((\varphi(t))^{n+1} - (\varphi(t))^n \right) dt = \int_0^1 \left(\varphi(t) \right)^n (\varphi(t) - 1) dt.$$

 $\text{Or } \forall t \in [0,1], \ 0 \leqslant \sin 1 = \varphi(1) \leqslant \varphi(t) \leqslant \varphi(0) = 1. \ \text{Par consequent} : \forall t \in [0,1], \ \left(\varphi(t)\right)^n \geqslant 0 \ \text{et} \ \varphi(t) - 1 \leqslant 0.$

Alors
$$\forall t \in [0,1], \ \left(\varphi(t)\right)^n \left(\varphi(t)-1\right) \leqslant 0 \text{ et ainsi}: J_{n+1}-J_n=\int_0^1 \left(\varphi(t)\right)^n \left(\varphi(t)-1\right) \mathrm{d}t \leqslant 0.$$

Finalement: $\forall n \in [2, +\infty[, J_{n+1} \leq J_n]$.

La suite
$$(J_n)_{n\geqslant 2}$$
 est décroissante.

 $\mathbf{b.} \ \forall n \in [2, +\infty[, \ \forall t \in [0, 1], \ \left(\varphi(t)\right)^n \geqslant 0 \ \mathrm{donc} \ \forall n \in [2, +\infty[, \ J_n = \int_0^1 \left(\varphi(t)\right)^n \mathrm{d}t \geqslant 0.$

La suite $(J_n)_{n\geqslant 2}$ est décroissante et minorée par zéro donc elle converge.

La suite
$$(J_n)_{n\geqslant 2}$$
 est convergente.

c. Soient a un élément de]0,1[et n un élément de $[2,+\infty[$.

 φ est décroissante, positive et majorée par 1 sur [0,1].

Par conséquent $\forall t \in [0, a], \ 0 \leqslant \varphi(t) \leqslant 1 \text{ et } \forall t \in [a, 1], \ 0 \leqslant \varphi(t) \leqslant \varphi(a).$

Ainsi $\forall t \in [0, a], \ 0 \leqslant (\varphi(t))^n \leqslant 1 \text{ et } \forall t \in [a, 1], \ 0 \leqslant (\varphi(t))^n \leqslant (\varphi(a))^n.$

Alors
$$\int_0^a (\varphi(t))^n dt \leqslant \int_0^a 1 dt = a$$
 et $\int_a^1 (\varphi(t))^n dt \leqslant \int_a^1 (\varphi(a))^n dt = (1-a) (\varphi(a))^n$

$$\forall n \in [2, +\infty[, \forall a \in]0, 1[, \int_0^a (\varphi(t))^n dt \leqslant a \text{ et } \int_a^1 (\varphi(t))^n dt \leqslant (1-a) (\varphi(a))^n.$$

d. Soit a un élément de]0,1[.

$$\forall n \in [2, +\infty[, 0 \leq J_n = \int_0^1 (\varphi(t))^n dt = \int_0^a (\varphi(t))^n dt + \int_0^1 (\varphi(t))^n dt \leq a + (1-a) (\varphi(a))^n.$$

Donc $\forall n \in [2, +\infty[, 0 \le J_n \le a + (1-a)(\varphi(a))^n (*).$

Or $\lim_{n \to +\infty} J_n = \ell$ et $\lim_{n \to +\infty} (\varphi(a))^n = 0$ car $|\varphi(a)| < 1$. En passant à la limite dans (*) on obtient $0 \le \ell \le a$.

$$\forall a \in]0,1[,\ 0 \leqslant \ell \leqslant a$$

En faisant tendre a vers 0 dans l'encadrement précédent on obtient $\ell = 0$.

$$\ell = 0$$
, donc la suite $(J_n)_{n \geqslant 2}$ converge vers 0

3.a. Pour tout n dans $[2, +\infty[$, $J_n = \int_0^1 (\varphi(t))^n dt$ et $K_n = \int_1^{+\infty} (\varphi(t))^n dt$ convergent donc:

pour tout élément
$$n$$
 de $[2, +\infty[$, $I_n = \int_0^{+\infty} (\varphi(t))^n dt$ converge.

3.b. $\forall n \in \mathbb{N}, \ 0 \le |I_n| = |J_n + K_n| \le |J_n| + |K_n| \le |J_n| + \frac{1}{n-1}$

 $\lim_{n\to +\infty} |J_n|=0$ et $\lim_{n\to +\infty} \frac{1}{n-1}=0$ alors, par encadrement on obtient :

$$\lim_{n \to +\infty} I_n = 0.$$

PARTIE IV: Etude de la série de terme général In

1. Soit p un élément de \mathbb{N}^* .

$$K_{2p} + K_{2p+1} = \int_{1}^{+\infty} (\varphi(t))^{2p} dt + \int_{1}^{+\infty} (\varphi(t))^{2p+1} dt = \int_{1}^{+\infty} (\varphi(t))^{2p} (1 + \varphi(t)) dt$$

 $\text{Or } \forall t \in [1,+\infty[, \ \left(\varphi(t)\right)^{2p} \geqslant 0 \text{ et } \forall t \in [1,+\infty[, \ 1+\varphi(t)\big) \geqslant 0 \text{ car } \forall t \in]0,+\infty[, \ |\varphi(t)| \leqslant 1.$

Par conséquent $\forall t \in [1, +\infty[\left(\varphi(t)\right)^{2p}\left(1+\varphi(t)\right) \geqslant 0 \text{ donc } \int_{1}^{+\infty}\left(\varphi(t)\right)^{2p}\left(1+\varphi(t)\right) dt \geqslant 0.$

$$\forall p \in \mathbb{N}^*, \ K_{2p} + K_{2p+1} \geqslant 0.$$

2. Soit N un élément de \mathbb{N}^* . $\forall p \in \mathbb{N}^*, \ 0 \leqslant K_{2p} + K_{2p+1} = I_{2p} - J_{2p} + I_{2p+1} - J_{2p+1}$

Donc $\forall p\in\mathbb{N}^*,\ I_{2p}+I_{2p+1}\geqslant J_{2p}+J_{2p+1}.$ En sommant de 1 à N on obtient :

$$\forall N \in \mathbb{N}^*, \sum_{p=1}^N \left(I_{2p} + I_{2p+1} \right) \geqslant \sum_{p=1}^N \left(J_{2p} + J_{2p+1} \right).$$

3. Soit N un élment de \mathbb{N}^* . En utilisant I.3.b et IV 2. on obtient :

$$\sum_{p=2}^{2N+1} I_p = \sum_{p=1}^{N} \left(I_{2p} + I_{2p+1} \right) \geqslant \sum_{p=1}^{N} \left(J_{2p} + J_{2p+1} \right) \geqslant \sum_{p=1}^{N} \left(\frac{1}{2p+1} + \frac{1}{2p+2} \right) = \sum_{p=3}^{2N+2} \frac{1}{p}$$

La série de terme général $\frac{1}{p}$ est divergente et à terme positifs donc la suite de ses sommes partielles tend vers $+\infty$.

Ce qui suffit pour dire que : $\lim_{N\to+\infty}\sum_{p=3}^{2N+2}\frac{1}{p}=+\infty$ et ainsi $\lim_{N\to+\infty}\sum_{p=2}^{2N+1}I_p=+\infty$.

Ceci suffit pour dire que la suite des sommes partielles de la série de terme général I_p ne converge pas. Alors

La série de terme général I_n diverge.

SECOND PROBLÈME

PARTIE I: Inverse généralisé d'un endomorphisme symétrique

1. f est non inversible donc f n'est pas bijective. Comme f est un endomorphisme de E, qui est de dimension finie, f n'est pas injective. Son noyau n'est donc pas réduit à 0_E donc 0 est valeur propre de f.

f est diagonalisable car f est un endomorphisme symétrique. Supposons que 0 soit la seule valeur propre de E. Alors le sous-espace propre de f associé à 0 est E donc Ker f = E et f est l'endomorphisme nul de E ce qui contredit l'hypothèse.

0 est valeur propre de f et f admet au moins une valeur propre non nulle.

2. a. Tout cela est du cours. Soit x un élément de $E_f(\lambda)$ et y un élément de $E_f(\mu)$. $f(x) = \lambda x$ et $f(y) = \mu y$.

 $\lambda < x, y > = < \lambda x, y > = < f(x), y > = < x, f(y) > = < x, \mu y > = \mu < x, y > (f \text{ est symétrique}).$

$$\forall x \in E_f(\lambda), \ \forall y \in E_f(\mu), \ \lambda < x, y >= \mu < x, y >.$$

b. Soient λ et μ deux valeurs propres distinctes de f.

 $\forall x \in E_f(\lambda), \ \forall y \in E_f(\mu), \ \lambda < x, y >= \mu < x, y > \text{donc } \forall x \in E_f(\lambda), \ \forall y \in E_f(\mu), \ (\lambda - \mu) < x, y >= 0.$

Comme $\lambda - \mu$ n'est pas nul : $\forall x \in E_f(\lambda), \ \forall y \in E_f(\mu), \ \langle x, y \rangle = 0.$ $E_f(\lambda)$ et $E_f(\mu)$ sont donc orthogonaux.

Les sous-espaces propres de f sont deux à deux orthogonaux.

3. Soient x un élément de Ker f et y un élément de Im f. $f(x) = 0_E$ et il existe un élément t de E tel que y = f(t).

$$\langle x, y \rangle = \langle x, f(t) \rangle = \langle f(x), t \rangle = \langle 0_E, t \rangle = 0.$$

 $\forall x \in \text{Ker } f, \ \forall y \in \text{Im } f, \ \langle x, y \rangle = 0 \text{ donc Ker } f \text{ et Im } f \text{ sont orthogonaux. En particulier leur intersection est } \{0_E\}.$

Or, d'après le théorème du rang, $\dim E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$. Comme E est de dimension finie ceci achève de prouver que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont supplémentaires.

 $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont supplémentaires orthogonaux dans E.

Remarque $(\operatorname{Ker} f)^{\perp} = \operatorname{Im} f \operatorname{et} (\operatorname{Im} f)^{\perp} = \operatorname{Ker} f.$

4. a. f est diagonalisable et admet k+1 valeurs propres deux à deux distinctes $\lambda_0, \lambda_1, ..., \lambda_k$.

Par conséquent : $E = E_f(\lambda_0) \oplus E_f(\lambda_1) \oplus \cdots \oplus E_f(\lambda_k)$. Ce qui signifie que :

pour tout élément
$$x$$
 de E , il existe un unique $(k+1)$ -uplet (x_0, x_1, \dots, x_k) de $E_f(\lambda_0) \times E_f(\lambda_1) \times \dots \times E_f(\lambda_k)$ tel que $x = x_0 + x_1 + \dots + x_k$.

b. Soit j un élément de [0, k] et soit x un élément de E.

$$(x_0, x_1, \dots, x_k)$$
 est l'unique $(k+1)$ -uplet de $E_f(\lambda_0) \times E_f(\lambda_1) \times \dots \times E_f(\lambda_k)$ tel que $x = \sum_{\ell=0}^k x_\ell$.

$$p_j(x) = p_j\left(\sum_{\ell=0}^k x_\ell\right) = \sum_{\ell=0}^k p_j(x_\ell).$$

 x_j appartient à $E_f(\lambda_j)$ donc $p_j(x_j) = x_j$. Soit ℓ un élément de [0, k] distinct de j.

 x_{ℓ} appartient à $E_f(\lambda_{\ell})$ qui est orthogonal à $E_f(\lambda_j)$ donc qui est contenu dans l'orthogonal de $E_f(\lambda_j)$. Alors $p_j(x_{\ell}) = 0_E$.

Finalement $p_j(x) = \sum_{\ell=0}^k p(x_\ell) = x_j$.

Si
$$j$$
 est dans $[0, k]$, si x est dans E et si (x_0, x_1, \dots, x_k) est l'unique $(k + 1)$ -uplet de $E_f(\lambda_0) \times E_f(\lambda_1) \times \dots \times E_f(\lambda_k)$ tel que $x = x_0 + x_1 + \dots + x_k$ alors : $p_j(x) = x_j$.

En reprenant les notations précèdentes on a: $Id_E(x) = x = \sum_{\ell=0}^k x_\ell = \sum_{\ell=0}^k p_\ell(x) = (p_0 + p_1 + \dots + p_k)(x)$ et ceci pour tout x dans E. Par conséquent :

$$Id_E = p_0 + p_1 + \dots + p_k.$$

5 .a. Soient i et j deux éléments distincts de [0, k]. Soit x un élément de E.

Soit
$$(x_0, x_1, \dots, x_k)$$
 l'unique $(k+1)$ -uplet de $E_f(\lambda_0) \times E_f(\lambda_1) \times \dots \times E_f(\lambda_k)$ tel que $x = \sum_{\ell=0}^k x_\ell$.

 $(p_i \circ p_j)(x) = p_i(p_j(x)) = p_i(x_j)$. j étant différent de i, $p_i(x_j) = 0_E$ car x_j appartient à l'orthogonal de $E_f(\lambda_i)$.

Finalement $\forall x \in E, \ (p_i \circ p_j)(x) = 0_E$. Par conséquent :

$$\forall (i,j) \in [0,k]^2, i \neq j \Rightarrow p_i \circ p_j = 0_{\mathcal{L}(E)}.$$

b. Soit x un élément de E et soit (x_0, x_1, \dots, x_k) l'unique (k+1)-uplet de $E_f(\lambda_0) \times E_f(\lambda_1) \times \dots \times E_f(\lambda_k)$ tel que $x = \sum_{k=0}^{k} x_{\ell}$.

$$f(x) = f\left(\sum_{\ell=0}^{k} x_{\ell}\right) = \sum_{\ell=0}^{k} f(x_{\ell}) = \sum_{\ell=0}^{k} \lambda_{\ell} x_{\ell} = \sum_{\ell=0}^{k} \lambda_{\ell} p_{\ell}(x) = \left(\sum_{\ell=0}^{k} \lambda_{\ell} p_{\ell}\right)(x) = \left(\sum_{\ell=1}^{k} \lambda_{\ell} p_{\ell}\right)(x) \ (\lambda_{0} = 0).$$

Donc: $\forall x \in E, \ f(x) = \left(\sum_{\ell=1}^k \lambda_\ell p_\ell\right)(x)$. Alors:

$$f = \sum_{\ell=1}^k \lambda_\ell \, p_\ell = \lambda_1 \, p_1 + \lambda_2 \, p_2 + \dots + \lambda_k \, p_k.$$

<u>Remarque</u> Il est aisé de montré que : $\forall r \in \mathbb{N}^*, \ f^r = \sum_{\ell=1}^k \lambda_\ell \, p_\ell^r = \lambda_1 \, p_1^r + \lambda_2 \, p_2^r + \dots + \lambda_k \, p_k^r$

c. Soit x un élément de E et soit (x_0, x_1, \dots, x_k) l'unique (k+1)-uplet de $E_f(\lambda_0) \times E_f(\lambda_1) \times \dots \times E_f(\lambda_k)$ tel que $x = \sum_{\ell=0}^k x_\ell$.

 x_0 appartient à $E_f(\lambda_0)$ donc à Ker f. Posons $y = \sum_{\ell=1}^k x_\ell$ et montons que y appartient à $\operatorname{Im} f$.

$$\forall \ell \in \llbracket 1, k \rrbracket, \ \lambda_\ell \neq 0 \text{ donc } y = \sum_{\ell=1}^k \, x_\ell = \sum_{\ell=1}^k \, \left(\frac{1}{\lambda_\ell} \, \lambda_\ell \, x_\ell\right) = \sum_{\ell=1}^k \, \left(\frac{1}{\lambda_\ell} \, f(x_\ell)\right) = f\left(\sum_{\ell=1}^k \, \frac{1}{\lambda_\ell} \, x_\ell\right).$$

Ainsi y appartient à l'image de f.

On a donc $x = x_0 + y$ avec x_0 dans Ker f et y dans Im f. Ceci suffit pour dire que p(x) = y.

Donc
$$p(x) = \sum_{\ell=1}^k x_\ell = \sum_{\ell=1}^k p_\ell(x) = \left(\sum_{\ell=1}^k p_\ell\right)(x)$$
 et ceci pour tout élément x de E . Alors :

$$p = \sum_{\ell=1}^{k} p_{\ell} = p_1 + p_2 + \dots + p_k.$$

<u>Remarque</u> Notons que nous avons montré que $E_f(\lambda_1) \oplus E_f(\lambda_2) \oplus \cdots E_f(\lambda_k)$ est contenu dans Im f. En fait il n'est pas difficle de voir que $E_f(\lambda_1) \oplus E_f(\lambda_2) \oplus \cdots E_f(\lambda_k) = \operatorname{Im} f$.

6. a.
$$f = \sum_{i=1}^k \lambda_i p_i$$
 et $f^{\sharp} = \sum_{i=1}^k \frac{1}{\lambda_j} p_j$.

$$f \circ f^{\sharp} = \left(\sum_{i=1}^{k} \lambda_{i} p_{i}\right) \circ \left(\sum_{j=1}^{k} \frac{1}{\lambda_{j}} p_{j}\right) = \sum_{i=1}^{k} \sum_{j=1}^{k} \left(\left(\lambda_{i} p_{i}\right) \circ \left(\frac{1}{\lambda_{j}} p_{j}\right)\right) = \sum_{i=1}^{k} \sum_{j=1}^{k} \left(\frac{\lambda_{i}}{\lambda_{j}} p_{i} \circ p_{j}\right).$$

Rappelons que $\forall i \in [0, k]$, $p_i \circ p_i = p_i$ et que $\forall (i, j) \in [0, k]^2$, $i \neq j \Rightarrow p_i \circ p_j = 0_{\mathcal{L}(E)}$.

Alors:
$$f \circ f^{\sharp} = \sum_{i=1}^{k} \left(\frac{\lambda_i}{\lambda_i} p_i \right) = \sum_{i=1}^{k} p_i = p.$$

$$f \circ f^{\sharp} = \sum_{i=1}^{k} p_i = p.$$

b. Soient x et y deux éléments de E.

$$f(x) - p(y) = f(x) - (f \circ f^{\sharp})(y) = f(x) - f(f^{\sharp}(y)) = f(x - f^{\sharp}(y)).$$

Ainsi on a f(x) = p(y) si et seulement si $f(x - f^{\sharp}(y)) = 0_E$, ou si et seulement si $x - f^{\sharp}(y)$ appartient au noyau de f.

$$\forall (x,y) \in E^2, \ f(x) = p(y) \iff x - f^{\sharp}(y) \in \operatorname{Ker} f.$$

7. a. Soit y un élément de E. Im f étant un sous-espace vectoriel de E le cours sur les projections orhogonales montre que $\min_{z' \in \operatorname{Im} f} \|z' - y\|$ existe et que la projection orthogonale p(y) de y sur Im f est le seul élément de ce sous-espace tel que $\|p(y) - y\| = \min_{z' \in \operatorname{Im} f} \|z' - y\|$.

Alors $\min_{x \in E} \|f(x) - y\|$ existe et la projection orthogonale p(y) de y sur $\mathrm{Im}\, f$ est le seul élément de ce sous-espace tel que $\|p(y) - y\| = \min_{x \in E} \|f(x) - y\|$.

Dès lors soit x un élément de E. f(x) est de tout évidence un élément de $\operatorname{Im} f$.

Ainsi $||f(x) - y|| = \min_{x \in E} ||f(x) - y||$ si et seulement si f(x) = p(y) donc si et seulement si $x - f^{\sharp}(y)$ est un élément de Ker f.

Si x et y sont deux éléments de E :

- $\min_{z \in E} ||f(z) y||$ existe;
- $||f(x) y|| = \underset{z \in E}{\operatorname{Min}} ||f(z) y|| \Longleftrightarrow x f^{\sharp}(y) \in \operatorname{Ker} f.$
- $\mathbf{b.} \ \ f^{\sharp}(y) f^{\sharp}(y) = 0_{E} \ \text{donc} \ f^{\sharp}(y) f^{\sharp}(y) \ \text{appartient alors à Ker} \ f \ \text{et ainsi} : \|f\big(f^{\sharp}(y)\big) y\| = \min_{z \in E} \|f(z) y\|.$

Montrons alors $f^{\sharp}(y)$ est LE vecteur x de E de plus petite norme vérifiant $||f(x) - y|| = \underset{z \in E}{\text{Min}} ||f(z) - y||$.

<u>Version 1</u> Soit x un autre élément de E tel que $||f(x) - y|| = \underset{z \in E}{\text{Min}} ||f(z) - y||$. Alors $x - f^{\sharp}(y)$ appartient à Ker f.

Montrons que $f^{\sharp}(y)$ appartient à Im f. $\forall \ell \in [1, k], \ p_{\ell}(y) \in E_f(\lambda_{\ell}) \ \text{donc} \ \forall \ell \in [1, k], \ \frac{1}{\lambda_{\ell}} \ p_{\ell}(y) \in E_f(\lambda_{\ell}).$

Alors $f^{\sharp}(y)$ appartient à $E_f(\lambda_1) \oplus E_f(\lambda_2) \oplus \cdots E_f(\lambda_k)$ qui est contenu dans $\operatorname{Im} f$. $f^{\sharp}(y) \in \operatorname{Im} f$.

 $x - f^{\sharp}(y)$ appartient à Ker f, $f^{\sharp}(y)$ appartient à Im f et Ker f et Im f sont orthogonaux donc $x - f^{\sharp}(y)$ et $f^{\sharp}(y)$ sont orthogonaux.

Le théorème de pythagore donne $||x - f^{\sharp}(y)||^2 + ||f^{\sharp}(y)||^2 = ||(x - f^{\sharp}(y))| + f^{\sharp}(y)||^2 = ||x||^2$.

Alors $||f^{\sharp}(y)||^2 \le ||x - f^{\sharp}(y)||^2 + ||f^{\sharp}(y)||^2 = ||x||^2$. Donc $||f^{\sharp}(y)|| \le ||x||^2$. Mieux $||f^{\sharp}(y)|| < ||x||^2$ si x est différent de $f^{\sharp}(y)$.

Si y est dans E, $f^{\sharp}(y)$ est le vecteur x de E de plus petite norme vérifiant $||f(x) - y|| = \underset{z \in E}{\text{Min}} ||f(z) - y||$.

<u>Version 2</u> Notons \mathcal{S} l'ensemble des éléments x de E tels que $||f(x) - y|| = \underset{z \in E}{\text{Min}} ||f(z) - y||$.

$$S = \{ x \in E \mid x - f^{\sharp}(y) \in \text{Ker } f \} = \{ f^{\sharp}(y) + t; t \in \text{Ker } f \} = \{ f^{\sharp}(y) - t; t \in \text{Ker } f \} \text{ non } ?$$

On cherche x_0 dans \mathcal{S} tel que $||x_0|| = \underset{x \in \mathcal{S}}{\text{Min}} ||x||$. Cela revient à chercher t_0 dans Ker f tel que $||f^{\sharp}(y) - t_0|| = \underset{t \in \text{Ker } f}{\text{Min}} ||f^{\sharp}(y) - t||$.

Le cours sur les projections orthogonales montre que la projection orthogonale u de $f^{\sharp}(y)$ sur Ker f est l'unique élément de Ker f tel que $||f^{\sharp}(y) - u|| = \min_{t \in \text{Ker } f} ||f^{\sharp}(y) - t||$.

Donc $f^{\sharp}(y) - u$ est l'unique élément de \mathcal{S} tel $||f^{\sharp}(y) - u|| = \underset{x \in S}{\min} ||x||$.

Comme $f^{\sharp}(y)$ appartient à Im f qui est l'orthogonale de Ker f, sa projection orthogonale u sur Ker f est nulle. Ainsi

$$f^{\sharp}(y) = f^{\sharp}(y) - u$$
 est l'unique élément de \mathcal{S} tel $||f^{\sharp}(y)|| = ||f^{\sharp}(y) - u|| = \min_{x \in S} ||x||$.

PARTIE II: Application à un exemple

1. La matrice A de f dans la base orthonormale \mathcal{B} est symétrique donc f est symétrique.

La somme de la deuxième colonne et de la quatrième colonne de A est nulle donc $f(e_2) + f(e_4) = 0_E$ ou $f(e_2 + e_4) = 0_E$. Ainsi $e_2 + e_4$ est un élément non nul de Ker f. f n'est pas injective donc pas inversible.

La matrice A n'étant pas la matrice nulle, f n'est pas l'endomorphisme nul de E.

f est un endomorphisme non nul et non inversible de E.

2. Soit λ un élément de \mathbb{R} . Cherchons une réduite de Gauss de $A - \lambda I_3$. Les opérations $L_1 \leftrightarrow L_3$ et $L_1 \leftrightarrow L_3$

$$\text{transforme } A - \lambda \, I_3 = \begin{pmatrix} 3 - \lambda & 0 & -1 & 0 \\ 0 & 1 - \lambda & 0 & -1 \\ -1 & 0 & 3 - \lambda & 0 \\ 0 & -1 & 0 & 1 - \lambda \end{pmatrix} \, \text{en} \begin{pmatrix} -1 & 0 & 3 - \lambda & 0 \\ 0 & -1 & 0 & 1 - \lambda \\ 3 - \lambda & 0 & -1 & 0 \\ 0 & 1 - \lambda & 0 & -1 \end{pmatrix}$$

Les opérations $L_3 \leftarrow L_3 + (3-\lambda)\,L_1$ et $L_4 \leftarrow L_4 + (1-\lambda)\,L_2$ transforme cette dernière matrice en

$$B_{\lambda} = \begin{pmatrix} -1 & 0 & 3 - \lambda & 0\\ 0 & -1 & 0 & 1 - \lambda\\ 0 & 0 & (3 - \lambda)^2 - 1 & 0\\ 0 & 0 & 0 & (1 - \lambda)^2 - 1 \end{pmatrix}$$

 λ est une valeur propre de A si et seulement si $A - \lambda I_3$ n'est pas inversible, c'est à dire si et seulement si B_{λ} n'est pas inversible.

 B_{λ} étant triangulaire supérieure elle est non inversible si et seulement si l'un des coefficients de sa diagonale est nul.

Alors λ est valeur propre de A si et seulement si $(3 - \lambda)^2 - 1 = 0$ ou $(1 - \lambda)^2 - 1 = 0$; c'est à dire si et seulement si $3 - \lambda = 1$ ou $3 - \lambda = -1$ ou $1 - \lambda = 1$ ou $1 - \lambda = -1$.

Les valeurs propres de A sont donc 0, 2 et 4.

$$f$$
 admet exactement 3 valeurs propres distinctes: $\lambda_0=0,\ \lambda_1=2$ et $\lambda_2=4.$

3. D'après la première partie : $f = \lambda_1 p_1 + \lambda_2 p_2 = 2 p_1 + 4 p_2$. Alors :

$$A = 2 M_1 + 4 M_2.$$

4. a. Soit x un élement de E de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} .

$$u \in E_f(\lambda_2) \Longleftrightarrow \begin{pmatrix} 3 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 3 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 4 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \Longleftrightarrow \begin{cases} -x_1 - x_3 = 0 \\ -3x_2 - x_4 = 0 \\ -x_1 - x_3 = 0 \\ -x_2 - 3x_4 = 0 \end{cases}.$$

$$u \in E_f(\lambda_2) \iff \begin{cases} x_3 = -x_1 \\ x_4 = -3x_2 = -\frac{1}{3}x_2 \end{cases} \iff x_3 = -x_1 \text{ et } x_2 = x_4 = 0$$

 $E_f(\lambda_2)$ est donc la droite vectorielle engendrée par $v_2' = e_1 - e_3$.

$$v_2 = \frac{1}{\|v_2'\|} v_2' = \frac{1}{\sqrt{2}} (e_1 - e_3)$$
 est un vecteur unitaire de $E_f(\lambda_2)$.

$$E_f(\lambda_2)$$
 est de dimension 1 et $v_2 = \frac{1}{\sqrt{2}} \left(e_1 - e_3 \right)$ est un élément de $E_f(\lambda_2)$ tel que $||v_2|| = 1$.

b. Soit x un élément de E. $p_2(x) \in E_f(\lambda_2)$ donc il existe un réel γ tel que $p_2(x) = \gamma v_2$.

 $x - p_2(x)$ appartient à l'orthogonal de $E_f(\lambda_2)$ donc est orthogonal à v_2 .

Ainsi
$$0 = \langle x - p_2(x), v_2 \rangle = \langle x, v_2 \rangle - \langle p_2(x), v_2 \rangle = \langle x, v_2 \rangle - \langle \gamma v_2, v_2 \rangle = \langle x, v_2 \rangle - \gamma \|v_2\|^2$$
.

$$0 = \langle x, v_2 \rangle - \gamma$$
. Ainsi $\gamma = \langle x, v_2 \rangle$ et $p_2(x) = \langle x, v_2 \rangle v_2$.

$$\forall x \in E, \ p_2(x) = \langle x, v_2 \rangle \ v_2.$$

c. Soit x un élément de E de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} .

$$\langle x, v_2 \rangle = \langle (x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4, \frac{1}{\sqrt{2}} (e_1 - e_3) \rangle = \frac{1}{\sqrt{2}} (x_1 - x_3)$$

$$p_2(x) = \langle x, v_2 \rangle \ v_2 = \frac{1}{2} (x_1 - x_3) (e_1 - e_3).$$

Alors
$$p_2(e_1) = \frac{1}{2}(e_1 - e_3), p_2(e_2) = 0_E, p_2(e_3) = -\frac{1}{2}(e_1 - e_3)$$
 et $p_2(e_4) = 0_E$. Donc:

$$M_2 = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} & 0\\ 0 & 0 & 0 & 0\\ -\frac{1}{2} & 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

5. Soit A^{\sharp} la matrice de f^{\sharp} dans la base \mathcal{B} . $f^{\sharp} = \frac{1}{\lambda_1} p_1 + \frac{1}{\lambda_2} p_2 = \frac{1}{2} p_1 + \frac{1}{4} p_2$. Donc $A^{\sharp} = \frac{1}{2} M_1 + \frac{1}{4} M_2$.

$$A = 2\,M_1 + 4\,M_2 \text{ donne } \frac{1}{2}\,M_1 = \frac{1}{4}\,A - M_2 \text{ et ainsi } A^\sharp = \frac{1}{4}\,A - \frac{3}{4}\,M_2.$$

$$A^{\sharp} = \frac{1}{4} \begin{pmatrix} 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix} - \frac{3}{4} \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \text{ Finalement :}$$

La matrice de
$$f^{\sharp}$$
 relativement à la base \mathcal{B} est : $A^{\sharp} = \frac{1}{8} \begin{pmatrix} 3 & 0 & 1 & 0 \\ 0 & 2 & 0 & -2 \\ 1 & 0 & 3 & 0 \\ 0 & -2 & 0 & 2 \end{pmatrix}$.