

Chambre de Commerce et d'Industrie de Lyon

École Supérieure de Commerce de Lyon

CONCOURS D'ENTRÉE 2000

MATHEMATIQUES

1ère épreuve (option scientifique)

Mardi 2 mai 2000 de 8 heures à 12 heures

Les candidats ne doivent faire usage d'aucun document ; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

PREMIER PROBLÈME

Notations:

 \bullet n désigne un entier supérieur ou égal à 3 .

• $\mathcal{M}_n(\mathbb{R})$ est l'ensemble des matrices carrées d'ordre n à coefficients réels . I_n désigne la matrice identité de $\mathcal{M}_n(\mathbb{R})$. La transposée d'une matrice M est notée ${}^t\!M$.

• \mathbb{R}^n est muni du produit scalaire canonique noté $\langle ., . \rangle$ défini par :

si
$$x = (x_1, x_2, ..., x_n)$$
 et $y = (y_1, y_2, ..., y_n)$, alors $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$.

En notant les matrices unicolonnes $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ et en confondant les

matrices d'ordre 1 et les scalaires, on a alors $\ \langle \, x \,, \, y \, \rangle = \, {}^{\rm t} \! X \, Y$. La norme associée à ce produit scalaire est notée $\| \ \| .$

• $\mathcal{B} = (e_1, e_2, \dots, e_n)$ désigne la base canonique de \mathbb{R}^n . On rappelle que la matrice de passage P d'une base orthonormale de \mathbb{R}^n à une autre base orthonormale de \mathbb{R}^n vérifie ${}^{\mathrm{t}}P = P^{-1}$.

Les parties I et II sont indépendantes.

Partie I

1. On considère les matrices suivantes de $\mathcal{M}_3(\mathbb{R})$:

$$S = \begin{pmatrix} 5 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 5 \end{pmatrix} , \qquad P = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & 1 & \sqrt{2} \\ -\sqrt{3} & 1 & \sqrt{2} \\ 0 & -2 & \sqrt{2} \end{pmatrix} \quad .$$

- a. Justifier que S est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- **b.** Montrer qu'il existe une matrice diagonale D de $\mathcal{M}_3(\mathbb{R})$ telle que $S = P D^{-t}P$.
- 2. On considère la matrice $M=\begin{pmatrix}2&1&0\\0&2&1\\1&0&2\end{pmatrix}$ de $\mathcal{M}_3(\mathbb{R})$.
 - a. Vérifier que $(M-2I_3)^3=I_3$.
 - **b.** M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?
 - c. Calculer le produit ^tM M.

Partie II

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$. On note f l'endomorphisme de \mathbb{R}^n associé à la matrice A relativement à la base \mathcal{B} et g l'endomorphisme de \mathbb{R}^n associé à la matrice tA relativement à la base \mathcal{B} .

1. Montrer, pour tout x et tout y de \mathbb{R}^n :

$$\langle g(y), x \rangle = \langle y, f(x) \rangle$$
 puis $\langle (g \circ f)(x), x \rangle = ||f(x)||^2$.

- **2.** Montrer que l'endomorphisme $g \circ f$ est symétrique.
- 3. Montrer que $g \circ f$ est diagonalisable et que ses valeurs propres sont positives ou nulles.
- 4. Justifier l'existence d'une base orthonormale $\mathcal{B}' = (e'_1, e'_2, \dots, e'_n)$ de \mathbb{R}^n constituée de vecteurs propres de $g \circ f$.

On note Q la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' .

5. Montrer l'existence de n réels positifs ou nuls $\mu_1, \mu_2, \dots, \mu_n$ (non nécessairement distincts) tels

que la matrice diagonale
$$\Delta = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \mu_n \end{pmatrix}$$
 de $\mathcal{M}_n(\mathbb{R})$ vérifie : ${}^t\!A A = Q \Delta^2 {}^t\!Q$.

- 6. Montrer que la famille $(f(e'_1), f(e'_2), \dots, f(e'_n))$ est une famille orthogonale et que pour tout entier j de $\{1, 2, \dots, n\}$, $||f(e'_i)|| = \mu_j$.
- 7. Dans cette question, on suppose que A est inversible.
 - **a.** Vérifier que les nombres réels $\mu_1, \ \mu_2, \dots, \mu_n$ sont tous non nuls.
 - **b.** Montrer que la famille $\mathcal{C} = \left(\frac{1}{\mu_1} f(e_1'), \frac{1}{\mu_2} f(e_2'), \dots, \frac{1}{\mu_n} f(e_n')\right)$ est une base orthonormale de \mathbb{R}^n .
 - c. Soit R la matrice de passage de la base \mathcal{B} à la base \mathcal{C} . Montrer que $A = R \Delta Q$.

Partie III

Déterminer deux matrices orthogonales Q et R d'ordre 3 et une matrice diagonale Δ d'ordre 3 telles que $M=R\,\Delta\,Q$ où M est la matrice définie dans I,2.

DEUXIÈME PROBLÈME

Dans tout ce problème, a est un réel tel que 0 < a < 1.

I - Calcul d'une somme et d'une intégrale

1. Pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; \pi]$, on note :

$$C_n(x) = \sum_{k=1}^n \cos(kx).$$

a. Montrer, pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; \pi]$:

$$1 + 2 C_n(x) = \sum_{k=-n}^{n} e^{ikx}.$$

b. Etablir, pour tout nombre complexe z tel que $z \neq 1$:

$$\sum_{k=-n}^{n} z^{k} = z^{-n} \frac{1 - z^{2n+1}}{1 - z} \cdot$$

c. En déduire, pour tout $n \in \mathbb{N}^*$ et tout $x \in]0; \pi]$:

$$\frac{1}{2} + C_n(x) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)} .$$

2. Soit $n \in \mathbb{N}^*$. Montrer que l'intégrale $J_n = \int_0^\pi \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)} \, \mathrm{d}x$ existe et calculer sa valeur.

On note $\varphi: [0; \pi] \longrightarrow \mathbb{R}$ l'application définie par :

$$\varphi(x) = \begin{cases} 0 & \text{si } x = 0\\ \frac{\cos(ax) - 1}{\sin(\frac{x}{2})} & \text{si } x \in]0; \pi] \end{cases}$$

3. Montrer que φ est de classe C^1 sur $[0; \pi]$ et calculer $\varphi'(0)$.

4. On note, pour tout $n \in \mathbb{N}^*$: $I_n = \int_0^\pi \varphi(x) \sin\left(\left(n + \frac{1}{2}\right)x\right) dx$.

Montrer, grâce à une intégration par parties, que I_n tend vers 0 quand l'entier n tend vers l'infini.

II - Calcul de la somme d'une série

On note, pour $n \in \mathbb{N}^*$: $u_n = \int_0^{\pi} \cos(ax) \cos(nx) dx$.

1. Montrer, pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} u_k = -\frac{\sin(\pi a)}{2a} + \frac{1}{2}I_n + J_n.$$

- 2. En déduire que la série $\sum_{n\geqslant 1}u_n$ converge, et calculer sa somme (on pourra utiliser les résultats de I.2. et I.4.).
- 3. Calculer, pour tout $n \in \mathbb{N}^*$, u_n en fonction de a et de n.
- 4. Etablir:

$$\sum_{n=1}^{+\infty} \frac{2(-1)^{n-1}a}{n^2 - a^2} = \frac{\pi}{\sin(\pi a)} - \frac{1}{a} .$$

III - Calcul d'une intégrale

Dans cette partie, α désigne un réel tel que $\alpha > 1$.

1. Justifier l'existence de l'intégrale $\int_0^{+\infty} \frac{dt}{1+t^{\alpha}}.$

On note:
$$F(\alpha) = \int_0^{+\infty} \frac{\mathrm{d}t}{1+t^{\alpha}}$$
, $G(\alpha) = \int_0^1 \frac{\mathrm{d}t}{1+t^{\alpha}}$, $H(\alpha) = \int_1^{+\infty} \frac{\mathrm{d}t}{1+t^{\alpha}}$.

2.a. Montrer, pour tout réel t de [0; 1] et tout n de \mathbb{N} :

$$\frac{1}{1+t^{\alpha}} = \sum_{k=0}^{n} (-1)^k t^{k\alpha} + (-1)^{n+1} \, \frac{t^{(n+1)\alpha}}{1+t^{\alpha}} \ .$$

- **b.** Montrer que $\int_0^1 \frac{t^{(n+1)\alpha}}{1+t^{\alpha}} dt$ tend vers 0 lorsque l'entier n tend vers l'infini.
- c. En déduire que la série $\sum_{k>0} \frac{(-1)^k}{k\alpha+1}$ converge et que : $G(\alpha) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k\alpha+1}$.
- 3.a. En utilisant le changement de variable défini par $u=t^{1-\alpha}$, montrer :

$$H(\alpha) = \frac{1}{\alpha - 1} G\left(\frac{\alpha}{\alpha - 1}\right),\,$$

et en déduire :

$$H(\alpha) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n\alpha - 1}$$

b. Etablir:

$$F(\alpha) = 1 + \sum_{n=1}^{\infty} \frac{2(-1)^{n-1}}{n^2 \alpha^2 - 1}$$
.

4. En utilisant le résultat de II. 4., établir finalement :

$$F(lpha) = rac{rac{\pi}{lpha}}{\sinrac{\pi}{lpha}}$$
 .